Logo-ajehe
Submitted: 04 Feb 2021
Revision: 11 Apr 2021
Accepted: 01 May 2021
ePublished: 29 Dec 2021
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)

Avicenna J Environ Health Eng. 2021;8(2): 61-73.
doi: 10.34172/ajehe.2021.09

Scopus ID: 85123701362
  Abstract View: 919
  PDF Download: 604

Original Article

Lignocellulose Nanofiber Media for the Enhanced Removal of Copper From Aqueous Solutions

Saeedeh Rastegar 1* ORCID logo, Mansoor Ghaffari 2, Homa Hoseini 3

1 Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Recourses, Environmental Sciences, Gorgan, Iran
2 Department of Wood, Imam Khomeini Technical and Vocational School, Aliabad Katoul, Golestan Technical and Vocational University, Iran
3 Department of Environmental Pollution, Baharan Higher Education Institute, Gorgan, Iran
*Corresponding Author: Correspondence to Saeedeh Rastegar, Email: , Email: saeedehrastgar@yahoo.com

Abstract

Nowadays, the entry of heavy metals entry into aqueous environments has jeopardized the health of human societies. The experiment was conducted in discontinuous conditions, and the study focused on examining the effect of five parameters including initial concentration, temperature, contact time, pH, and adsorbent dose on the adsorption of Cu heavy metals. In addition, the two-parameter models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich were studied and compared to evaluate isothermal absorption. The highest correlation coefficients were obtained for Freundlich (0.969) and Dubinin-Radushkevich (0.9603) models. Finally, thermodynamic parameters such as enthalpy and entropy changes and Gibbs-free energy were calculated as well. The pH parameters, adsorption dose, contact time, temperature, and initial Cu concentrations in the discontinuous system had a statistically significant effect on the adsorption process. The results showed that the maximum efficiency of Cu adsorption by Lignocellulose nanofiber (LCNF) occurred at the pH of 6, contact time of 60 minutes, the ambient temperature of 25°C, and adsorption dose of 0.2 g. In the case of adsorption kinetics, the pseudo-second order model and intra-particle diffusion had more fitness with the experimental data indicating a chemical equilibrium between the adsorbate and the absorbent. Thermodynamic studies demonstrated that the process (negative ∆G) is spontaneous (negative ∆G), endothermic (negative ∆H), and non-random (positive ∆S). Thus, LCNF can be used as an effective adsorbent in the removal of metals by having an extremely high surface area.


First Name
 
Last Name
 
Email Address
 
Comments
 
Security code


Abstract View: 852

Your browser does not support the canvas element.


PDF Download: 604

Your browser does not support the canvas element.