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1. Introduction
Water is the most valuable substance that is involved 

in all life activities (1). The water demand increased in 
the last centuries due to the sharp growth in population, 
the industrial revolution, and commercial development 
(2). As a result, the generation of wastewater has also 
increased. In this context, the need for safe disposal from 
the generated wastewater has become an urgent issue 
(3). Wastewater treatment aims to recover water with 
standard limits before discharging it to the environment 
(4). In general, the treatment method is classified into 
physical, chemical, biological, or a combination thereof 
(5). The physical forces are the predominant forces in the 
physical treatment units. The typical physical methods 
are screening, mixing, sedimentation, filtration, and 
adsorption (6). Membrane technology has become more 
attractive than conventional separation techniques (7,8) 
due to high efficiency (9), small area requirements (10), 
and ease of operation (11).

The membrane technology employs a semipermeable 
material to separate components (12). It can also be 
described as a selective barrier between two adjacent 
phases that regulates the movement of some constituents 

from one side to another (13). Membrane technology 
has been utilized in many fields. For example, Dizge 
et al used a cellulose membrane for drinking water 
treatment (14). Collivignarelli et al removed non-ionic 
and anionic surfactants from laundry wastewater (15), 
and Romero-Dondiz et al employed ultrafiltration and 
nanofiltration membranes for wastewater recovery in 
leather industry (16). The membrane is also employed in 
biodiesel purification (17), fermentation industry (18), 
gas separation (19), and food industry processes (20).

Even though membrane technology is considered a green 
technology (14), it still faces a pressing problem related 
to the effect of fabrication materials on the environment 
(21, 22). To overcome this issue, many researchers have 
developed green membranes from natural sources. Saleh 
et al prepared ceramic membranes from basalt rock (23). 
Aloulou et al utilized Tunisian natural sand in a ceramic 
membrane preparation (24). Natural clay (25), fly ash 
(26), zeolite (27), and phosphate sub-products (28) were 
used as primary materials for membranes synthesis. Bio-
derived solvents were also utilized in the preparation of 
polymeric membranes (22, 29, 30).

Nature has inspired many researchers to use materials 

Abstract
Membrane technology is a green technology, but it still faces a pressing problem related to the effect 
of fabrication materials on the environment. The plant Verbascum thapsus L (VTL) was utilized as a 
biomembrane to reduce chemicals.  In this study, VTL was successfully utilized as a membrane for 
activated sludge separation. The membrane was characterized via scanning electron microscopy 
(SEM)-EDX, Fourier transform infrared (FTIR), and contact angle measurement. Additionally, the 
effects of pressures on the fluxes and the rejection ability were studied. The permeability of the 
bio-based membrane reached 581 L/m2.h.bar. The VTL membrane was examined for the removal 
of chemical oxygen demand (COD), protein, and carbohydrate. Accordingly, the maximum COD 
removal was obtained at a transmembrane pressure of 2.5 bar and reached up to 57%. The protein 
and carbohydrates rejections raised from 80% and 84% at 0.5 bar to 90% and 98% at 2.5 bar, 
respectively. The total resistance increased from 87% at a pressure of 0.5 bar to 96% at 2.5 bar. The 
flux recovery ratio (FRR) for the membrane at working pressures (0.5-2.5 bar) was 96% for 0.5 bar 
and 70% for 2.5 bar. The physical cleaning showed a flux recovery after three operation cycles. At 
the end of the filtration experiments, the pressure variation along streamlines over the membrane 
cross-section was simulated.  As a result of this study, the use of a naturally-derived membrane is 
considered a green technology. The plant-based membrane reduces the use of non-green chemicals. 
Moreover, VTL has no commercial value and is recognized as an invasive plant species. All of the 
previous issues made the study worthwhile.
Keywords: Verbascum thapsus, Bio-membrane, Green membrane, Activated sludge filtration

*Correspondence to
Nadir Dizge, 
Tel: +903243610001-17086
Email: ndizge@mersin.edu.tr

Published online December 29, 2021

Open Access
Scan to access more

free content

Received August 23, 2021; Revised November 3, 2021; Accepted December 3, 2021

Avicenna J Environ Health Eng. 2021 Dec;8(2):102-109 http://ajehe.umsha.ac.ir

https://doi.org/10.34172/ajehe.2021.13
https://orcid.org/0000-0002-7805-9315
http://crossmark.crossref.org/dialog/?doi=10.34172/ajehe.2021.13&domain=pdf&date_stamp=2021-12-29
http://ajehe.umsha.ac.ir


Avicenna J Environ Health Eng, Volume 8, Issue 2, 2021 103

 Verbascum Thapsus L as a plant-based membrane

present in it. Correa and Sens studied the possibility of 
utilizing wood as a membrane (31). Sens et al successfully 
employed a helical cross-flow filtration system to achieve 
an average removal of 70% and apparent color removal of 
93% for average turbidity (32). Boutilier et al developed 
an effective point-of-use device from plant xylem to 
supply pathogen-free drinking water (33).

Verbascum thapsus L (VTL) is a plant that grows in 
many regions all over the world (34). At the bottom 
of the plant, there is a large rosette of leaves where the 
stem grows to reach 2 m or more (35). Its small yellow 
flowers are densely grouped on a tall stem (36). The 
presence of oil, glycoside, flavonoids, sesquiterpenes, 
and verbathasin A made the researchers use the plant in 
medical practices (37). The plant has limited applications 
in environmental engineering (38). In Turkey, the plant 
is unfavorable and classified as an invasive plant species. 
The farmers remove VTL from their farms by the physical 
method. Consequently, the accumulated plant wastes are 
burned near the fields. In this study, VTL was used as a 
biomembrane for activated sludge filtration. The ability 
of VTL membrane in removal of COD, protein, and 
carbohydrate was examined. At the end of the filtration 
experiments, the pressure variation among streamlines 
over the membrane cross-section was simulated. From 
different perspectives, the use of a naturally-derived 
membrane is considered a green application. The plant-
based membrane reduces the use of non-green chemicals. 
Additionally, VTL has no commercial value and is 
recognized as an invasive plant species. All of the previous 
issues made the study worthwhile.

2. Materials and Methods 
2.1. Preparation of Plant-Based Biomembrane

VTL was collected from farms within the boundaries of 
Erdemli district, Mersin, Turkey. The leaf of the plant was 
separated from the whole plant. VTL leaves were gently 
washed with distilled water to remove any dust residuals 
and dried at room temperature for 48 hours. VTL leaves 
were cut in a circular shape with a diameter of 5.2 cm and 
used as a bio-membrane in a dead-end filtration system, 
as shown in Fig. 1.

2.2. Filtration Experiments of Activated Sludge 
In this research study, the filtration experiments were 

accomplished, as discussed in the previous work (39), with 
some modifications. Briefly, the prepared membrane was 
supported by a porous steel disk and inserted in a dead-
end filtration apparatus (Sterlitech HP 4750, Sterlitech, 
Kent, WA, USA). The distilled water was passed through 
the membrane under different pressure values (0.5-2.5 
bar) using N2 gas at room temperature. The operating 
pressure was selected based on the preliminary studies to 
avoid any damages to the biomembrane. The water passed 
through the membrane was measured, and the permeate 

flux (Jw) was calculated using equation 1 (40, 41). 

m

V PJw
A t Kµ

∆
= =

×
                                                            (1)

where Jw is the permeate flux (L/m2h), V is the volume 
of the water passed through the membrane (L), A is 
the active surface area (m2), t is the time (t), ∆P is the 
differential pressure across the membrane (bar), µ is the 
fluid dynamic viscosity (kg/m.s), and Km is the membrane 
resistance coefficient (1/m). 

The activated sludge was also filtrated, and the flux of 
permeate was recorded in the same manner as the distilled 
water flux. The used activated sludge was supplied from a 
local domestic wastewater treatment plant. The activated 
sludge characteristics included mixed liquor suspended 
solids concentration of 4500±150 mg/L, pH of 7.2±0.2, 
chemical oxygen demand (COD) of 323±5 mg/L, 
protein concentration of 58±4 mg/L, and carbohydrate 
concentration of 86±0.5 mg/L. The permeate water 
from the activated sludge filtration experiments was 
characterized, and the rejection percentage in the COD, 
protein, and carbohydrate was calculated using equation 
2 (39).

Rejection % = (1- ) 100%Permeate Concentration
Initial Concentration

×                   (2)

2.3. Characterization of Plant-Based Membrane
The plant-based membrane was characterized using 

Scanning Electron Microscopy and. Energy Dispersive 
X-Ray Analysis (SEM-EDX, Zeiss Supra 55 Germany). The 
membranes were frozen with nitrogen, and a chromium 
layer was used to coat the membranes. SEM images and 
SEM-EDX were used to explore the surface morphology 
and the chemical composition of the membrane. Fourier 
Transform Infrared Spectroscopy (FTIR, PerkinElmer 
USA) was used to record the membrane spectrum in the 
range 400-4000 cm-1. Water contact angle measurement 
was carried out using a goniometer (One Attension, 
Biolin scientific instrument).

Fig. 1. A Schematic Diagram of the Bio-membrane System Applied in This 
Study.
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2.4. Model Development
The hydrodynamic part of the filtration process was 

modeled using the Darcy equations for the fluid flow in 
the porous material. COMSOL Multiphysics V 5.5 was 
used as a simulator software. Equation 3 shows the Darcy 
equation used in the model (42).

( )
Ku P
cµ

= − ∇                                                                      (3)

where u is the velocity of the fluid flow through the 
porous material (m/s), K, µ(c), and P are the permeability 
(m2), the dynamic viscosity (Pa/s), and the gradient in the 
pressure (Pa), respectively. 

For the boundary conditions, the liquid was chosen 
to be distilled water with a density of 1000 kg/m3 and a 
dynamic viscosity of 1.002×10-3. SEM image was used 
as a basis to represent the porous material. Firstly, it was 
converted to binary format using Image J software and 
then exported to COMSOL Multiphysics. The input 
pressure was selected to be the same as the operating 
pressure (0.5-2.5 bar). The pressure at the output side 
was selected to be zero. The rest of the boundaries were 
selected to be a wall with no-slip conditions. To have 
significant results, the model was made of small triangle 
meshes. The change in pressure over the cross-section of 
the plant and the water streamline were determined. 

3. Results and Discussion 
3.1. Characterization of Plant-Based Membrane

The morphology of the bio-based membrane was 
characterized. The membranes have a neural network 
shape. The network consists of a number of nodes that 
comprised start points for cylindrical rods with different 
lengths and sizes (Fig. 2A and B). SEM-EDX analysis 
was also done. The plant-based membrane is formed 
from 48.15% carbon and 51.85% oxygen by weight. The 

obtained results for SEM-EDX are shown in Fig. 2C. 
The functional groups present on the VTL surface were 

recorded using Fourier Transform Infrared Spectroscopy 
(FT/IR-6700, Jasco) and are shown in Fig. 3. The peaks 
extended over five bands reflect that the sample may be 
a complex molecule. The presence of a peak at a band 
3333.36 cm-1, which is located in the range 3200-3600 
cm-1 refers to hydrogen bond O-H stretching (43). The 
recorded peaks under 3000 cm-1 indicate the presence of 
aliphatic compounds. The functional group, C-H stretch 
for CH2 and CH3 groups, was noticed at 2850.27 and 
2917.77 cm-1 bands. The mono distributed alkyne with 
C= C stretch was recorded at 2115.53 cm-1 (44,45). The 
carbonyl compounds (aldehydes) were noticed at the 
functional group, C=C stretch, at the band of 1728.87 
cm-1. The conjugated alkene class, which was attributed 
to C=C stretching, was noticed near 1633.41 cm-1. Johar 
et al recorded strong peak at 1623.77cm-1 and related it to 
the H-O-H bending (46). The peaks at the bands 1426.10 

Fig. 2. SEM Images for (A) VTL (100 µm), (B) VTL (20 µm), (C) SEM-EDX Results.

Fig. 3. FTIR Spectrum for VTL Membrane. 
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and 1372.50 cm-1 may correspond to O-H functional 
group. The strong peak at 1030.77 cm-1 may be related to 
sulfoxide class with functional group, S=O stretch. Yalvaç 
et al recorded similar results for VTL (38). 

3.2. Plant-Based Membrane Permeability for Distilled 
Water 

The permeability of the plant-based membrane was 
determined by measuring the distilled water passed 
through the membrane under different transmembrane 
pressure. Water flux increased at higher transmembrane 
pressure from 339 L/m2h at 0.5 bar to 1387 L/m2h at 
2.5 bar. The permeability of the plant-based membrane 
reached 580 L/m2hbar, and the membrane resistance 
coefficient was 5.8×1011 m-1. Similar results were obtained 
in previous studies (47,48). The linearity between the 
pressure and the water flux is shown in equation 1, and 
Fig. 4 infers that the flux can reach the maximum values at 
the highest potential transmembrane pressure. The water 
contact angle for the VTL plant was found to be 112±2°. 
According to Cheryan, the above-mentioned result is 
valid for the distilled water only where the risk of fouling 
is negligible. In the case of natural water/wastewater, 
the operation at higher pressure may exacerbate the 
membrane fouling (49).

3.3. Effect of the Operating Pressure on the Rejection and 
the Permeate Flux

The fluxes of the plant-based membrane at different 
transmembrane pressures (0.5-2.5 bar) were recorded 
and shown in Fig. 5A. The fluxes at the steady state were 
convergent, but in general, the fluxes increased with the 
increases in the pressure. The steady-state flux was 45 
L/m2h at 0.5 bar, while the flux at 2.5 bar reached 50 L/
m2h. The membrane capabilities in the COD, protein, and 
carbohydrate reduction at different operational pressures 
were also explored (Fig 5B). Accordingly, the maximum 
COD removal was obtained at a transmembrane pressure 
of 2.5 bar and reached 57%. The minimum rejection 
was 13% at a pressure of 0.5 bar. For the protein and 

carbohydrate rejection, the membrane showed high 
rejection performance at all operating pressures. In both, 
the rejection increased with the increases in the applied 
pressure. The protein rejection raised from 80% at 0.5 bar 
to 90% at 2.5 bar. The rejection of protein showed a low 
increment at pressures 1.0, 1.5, and 2.0 bar. The rejection 
of carbohydrates increased slowly with the increases in 
the pressure (from 84% at 0.5 bar to 89% at 2 bar). Then, 
the removal increased to reach 98% at 2.5 bar.

3.4. Plant-Based Membrane Fouling Resistance and Flux 
Recovery 

The hydraulic resistance for the membrane due to the 
fouling aspect manifested as a decline in the permeate 
flux in the case of fixed operation pressure. Or as an 
increment in the transmembrane pressure in case of 
constant permeate flux(50). The total fouling resistance 
(Rt) may be divided into reversible (Rr) and irreversible 
resistance (Rir) (51). Fig. 6A shows the total, reversible, and 
irreversible fouling resistance at different transmembrane 
pressures. The total resistance increased from 87% at a 
pressure value of 0.5 bar to 96% at 2.5 bar. The irreversible 
resistance (Rir) at a pressure of 0.5 bar was at the minimum 

Fig. 5. (A) Inclination-dependent Flux Profile for the Activated Sludge Under Different Pressure Values, (B) COD, Protein, and Carbohydrate Removal 
Efficiencies Under Different Pressure Values.

Fig. 4. Distilled Water Flux at Distinct Pressure Values. 
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level (4%), while the reversible resistance (Rr) was at the 
maximum level (83%). In contrast, Rir and Rr almost were 
30% and 66% at an operational pressure of 2.5 bar.

The flux recovery ratios (FRRs) for the membrane at 
working pressures (0.5-2.5) were calculated by obtaining 
the flux at the end of the filtration experiments. Fig. 6B 
shows the recovery of the flux at the pressure of 0.5-2.5 
bar. Accordingly, FRR had an inverse relationship with 
the transmembrane pressure. At lower pressure values 
(0.5 bar), FRR was approximated to be 96%, while the 
values decreased to reach 70% at the pressure of 2.5 bar.

3.5. Physical and Chemical Cleaning of Biomembrane
The fluxes declined in three stages. For the first 10 

minutes, fluxes decreased rapidly, followed by gradual 
flux decreases to reach the steady state. The membrane 
pore blocking is the mechanism that causes rapid initial 
drop, which incremented with the increases in the applied 
differential pressure (52). After that stage, the cake 
layer formation at the membrane surface demonstrated 
additional permeate flux resistance, followed by gradual 
inclination over the filtration time (53). 

Membrane cleaning is a way to recover the flux and 
eliminate fouling of the membranes. The cleaning was 
carried out using physical and chemical cleaning methods. 
According to Katsoufidou et al, physical cleaning is the 
simplest way to recover the flux (54). However, the flux 
may not be recovered by the physical cleaning alone 
(55). Chemical cleaning should be applied to remove 
the organic and inorganic materials, which cannot be 
removed via physical cleaning (56). In this study, physical 
cleaning was firstly applied by distilled water filtration for 
10 minutes. Then, the plant-based membrane was cleaned 
chemically using 0.1 M sodium hydroxide followed by 
distilled water. Subsequently, activated sludge was filtered 
again for 120 minutes. The physical cleaning showed a 
flux recovery after three operation cycles. The initial and 
steady-state fluxes were 695 and 20 L/m2h, respectively. 
The flux recovery after chemical cleaning was the same 
after physical cleaning. The initial flux after the chemical 
cleaning was 585 L/m2h and gradually dropped to reach 

14.8 L/m2h at the end of the filtration experiments (Fig. 7).

3.6. Model Results
The streamlines of the water flow through the plant-

based membrane are shown in Fig. 8. The streamlines 
flow from the inlet to the outlet. According to the SEM 
images of the plant-based membrane sample, the water is 
collected at specific points where the flow rate is greater 
and the membrane is present in two locations. The 
pressure gradient through the membrane exposed to the 
pressure of 2.5 bar is larger than the pressure gradient for 
the same membrane under the pressure of 0.5 bar (Fig. 8). 
explained the increase in flux with the pressure increase. 

3.7. Comparison with other Biomembranes
The prepared VTL membrane was compared with other 

biomembranes. Different types of membranes were used 
in separation of different types of materials. Table 1 shows 
the biomembrane application. 

4. Conclusion
In this study, VTL was successfully utilized as a 

membrane for activated sludge separation. Based on 
the SEM images, the membranes have a neural network 

Fig. 6. (A) Fouling Resistance for the Activated Sludge Under Different Pressure Values (B) Flux Recovery Rate for the Activated Sludge Under Different 
Pressure Values. 

Fig. 7. Effects of Physical and Chemical Cleaning on the Flux Recovery.
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shape. The network consisted of a number of nodes, 
which comprised start points for cylindrical rods with 
different lengths and sizes. The VTL-based membrane 
was examined for the removal of COD, protein, and 
carbohydrate. The plant-based membrane showed a high 
performance in activated sludge separation, especially in 
protein and carbohydrate rejection. The total resistance 
increased from 87% at 0.5 bar to 96% at 2.5 bar. The 
FRR for the membrane was 70% at 2.5 bar. The physical 
cleaning showed a flux recovery after three operation 
cycles without needing any chemicals. Additionally, 
the pressure gradient over the plant-based membrane 
cross-section was modeled. The utilization of the plant 
as a membrane can be considered as an eco-friendly 
application from different perspectives. The first one is to 
reduce the chemicals needed in the membrane fabrication 
process, which leads to a reduction in the cost. Moreover, 
the use of plants with no commercial value may reduce 
the air pollution that originated from similar plant 
burning. However, the plant-based membranes still need 
further researches before entering the application stage 
from sustainability and durability aspects. In addition, the 
synthesis of nanomaterials should be studied to increase 
efficiency.
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