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Abstract
The performance of electrooxidation (EO) treatment using activated carbon cloth (ACC) electrodes 
on textile dye bath wastewater was investigated. ACC electrode pairs were used as anode/cathode 
for EO experiments. The effect of current density (50–150 A/m2), operating time (0–90 minutes), and 
solution pH (6-11) were tested for removal of chemical oxygen demand (COD), color, and chloride, 
as well as the changes in conductivity. 95.5% COD and color removal efficiencies were obtained 
at current density (CD) of 100 A/m2 at solution pH of 10 for 90 minutes. Moreover, the chloride 
concentration decreased from 4254 to 35.5 mg/L and solution conductivity decreased from 160 
to 131 mS/cm at the same conditions. Operating cost of the EO process was calculated to be 3.13 
US$/m3 for 36 kWh/m3 energy consumption. The results indicated that the EO process with ACC 
electrodes achieved high pollutant removal from textile dye bath wastewater.
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1. Introduction
A large amount of wastewater is produced daily by the 

textile industry that contains various types of unreacted 
dyes, inorganic and common organic compounds of 
complex pollutants, and surfactants (1). Especially, the 
effluent from the dyeing process contains strong color and 
high chemical oxygen demand (COD) levels that require 
satisfactory treatment for sufficient removal efficiency 
(2). Otherwise, if the wastewater is not treated sufficiently 
during the dyeing process, dye contamination and high 
COD levels reduce the water quality (3). Moreover, high 
dye and COD levels in wastewater may cause aesthetic 
pollution, as well as mutagenic and carcinogenic effects 
if the wastewater is discharged directly into the receiving 
environment without any treatment (4).

Several treatment technologies have been used for 
the treatment of textile wastewater so far. Among these 
methods, membrane filtration (5), photocatalytic process 
(6), adsorption (7), coagulation (8), advanced oxidation 
(9), biological processes (10), and coupled processes (11-
13) are the most commonly used treatment processes. 
Although they have a satisfactory dye removal efficiency, 
some disadvantages such as an expensive investment 
and operating cost, formation of sludge and toxic 
intermediates, and membrane fouling limit the use of 
these technologies (4). Moreover, conventional biological 

processes cannot offer sufficient treatment efficiency, 
especially for dye removal due to the resistance of dyes to 
biodegradation (14). Therefore, studies on electrochemical 
treatment methods such as electrooxidation (EO) and 
electrocoagulation have increased recently due to their 
high dye removal efficiency in textile wastewater (2).

Electrochemical treatment processes are generally 
based on the indirect or mediated oxidation of the 
contaminants (15). The formation of hydroxyl radicals 
with high reactivity facilitates the degradation of the 
contaminants in textile wastewater (16,17). Many 
parameters such as solution conductivity, current 
density, solution pH, and electrode materials can affect 
electrochemical treatment processes (18). Recent 
studies in the literature have focused on innovative and 
environmentally friendly electrodes in which activated 
carbon cloth (ACC) electrodes have become prominent 
due to their high mechanical strength, easy handling, 
regeneration properties, and direct usage potential (19). 
While there are quite a lot of studies on the adsorption 
and electrosorption using ACC, studies on the use of 
electrochemical processes have just begun (20,21). Gineys 
et al (21) investigated the effect of polarization on the 
nanotexture of the ACC which can be used as an electrode 
in the electrochemical processes. It was observed that the 
oxidation of the pristine carbon material was enhanced by 
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anodic polarization while the surface chemistry and the 
properties of the nanotexture were not affected too much 
by cathodic polarization. Moreover, Wang et al (2) studied 
the removal of COD from real dye wastewater by the 
electro-Fenton process in which hydrogen peroxide was 
generated by polyacrylonitrile-based activated carbon 
fiber cloth cathode. They observed that COD removal 
efficiency was over 70% for 240 minutes of treatment. 
Additionally, they reported that the higher current 
densities deteriorated the COD removal efficiency due to 
the generation of side reactions.

Chloride rich cotton textile dye bath dump wastewater 
was treated using electrocoagulation process (22). Four 
electrode combinations (stainless steel-stainless steel, iron-
iron, aluminium-aluminium, and iron-aluminium) were 
tested on the removal of color and COD concentration. 
Iron electrodes enhanced efficient treatment and 98.8% 
color removal efficiency was observed at 12 V and 15 
minutes treatment time with a sludge generation rate of 
22.7 g/L. Moreover, 80.3% COD removal efficiency was 
obtained at 5.8 V and 5.7 minutes treatment time with a 
sludge generation rate of 5.7 g/L (22). In another study, 
textile dye wastewater was treated with electrochemical 
oxidation in a batch reactor. A maximum COD removal 
efficiency of 97.17% was obtained at a reactor volume of 
300 mL, electrolysis time of 6 hours, and current density 
of 4.0 A/dm2 (23). 

This study focused on investigating the performance 
and feasibility of treatment of textile dye bath wastewater 
by EO process using ACC electrodes. The effect of current 
density (50–150 A/m2), operating time (0–90 minutes), 
and pH of the initial wastewater (6-11) were systematically 
investigated for the removal of COD, color, and chloride, 
as well as the changes in conductivity. Operating cost 
and energy consumption of the EO process were also 
examined.

2. Materials and Methods
2.1. Characterization of Textile Dye Bath Wastewater

Textile dye bath wastewater was kindly provided by a 
large-scale textile industry (Seckin Textile, Gaziantep, 
Turkey). The produced dye bath wastewater quantity 
was about 50 m3/d. Samples were collected weekly from 
January to February 2020. Wastewater was used as 
received and it was not diluted during the experiments. 
The characterization of textile dye bath wastewater is 

given in Table 1. 

2.2. Experimental Setup
The schematic illustration of the batch reactor setup 

is shown in Fig. 1. It was composed of a borosilicate 
glass reactor, electrodes, a digital DC power system, 
connecting wires, a magnetic stirrer, and a water bath. 
EO experiments were performed in a 500 mL reactor 
with a working volume of 250 mL. The reactor was 
placed in a temperature-controlled water bath to supply 
a constant reaction temperature (25±1°C). A magnetic 
stirrer (Wisd -Wisestir MSH-20A) and a Teflon-covered 
magnetic stirring bar were used to mix the wastewater 
at 300 rpm. ACC was used as anode/cathode electrode 
pairs. The ACC electrodes were kindly provided by Norm 
Technologies, Turkey. The dimensions of anode/cathode 
electrode pairs were arranged as 5 cm width × 8 cm high 
× 1 mm thickness with the total effective area of 40 cm2 

and distance of 2 cm between the electrodes. DC power 
source (AATech ADC-3303D, the maximum voltage of 30 
V) was used to set anode and cathode connected to the 
positive and negative outlets. 

2.3. Analysis
Four different current densities (50, 75, 100, and 150 

A/m2), five different EO times (15, 30, 45, 60, and 90 
minutes), and four different wastewater pH values (6, 8, 
10, and 11) were tested for EO treatment of textile dye 
bath wastewater. At appropriate time intervals, samples 
were taken from the reactor, centrifuged at 6000 rpm for 
5 minutes, and analyzed to measure pH, conductivity, 
COD, color, and chloride. The conductivity and pH were 
measured using a pH/Cond 340i Handheld Multimeters, 
WTW. COD was measured according to Standard Method 
No. 5220C (24). The color was measured by Platinum–
Cobalt (Pt–Co) method in accordance with Standard 
Method No. 2120 (24). The chloride concentration was 
measured by Argentometric method in accordance with 
Standard Method No. 4500B (24). All EO experiments 
were performed in duplicates. 

Removal efficiencies of color and COD were calculated 

Table 1. Characterization of Textile Dye Bath Wastewater  

Sampling Date pH
Conductivity

(mS/cm)
Color

(Pt-Co)
Chloride
(mg/L)

COD
(mg/L)

05.01.2020 11.1 160 3320 4254 5312

15.01.2020 11.0 155 3300 4500 5300

30.01.2020 11.3 162 3330 4375 5305

05.02.2020 11.5 158 3325 4450 5325

Fig. 1. Experimental Set-up for Electrooxidation (1. Magnetic 
Stirrer, 2. Magnetic Bar, 3. Glass Reactor, 4. Anode ACC Electrode, 
5. Cathode ACC Electrode, 6. DC Power Source).
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using Equation (1):

Removal Efficiency (%) �
�� �

�
C C
C
i f

i

100                     (1)

where Ci was the initial concentration and Cf was the 
concentration after defined reaction time t (min).

3. Results and Discussion
EO was used as an electrochemical treatment for textile 

dye bath wastewater treatment using ACC electrode pairs 
as the anode/cathode electrodes. The effect of current 
density (CD) and solution pH were investigated on COD 
and color removal efficiencies as well as variations of the 
solution conductivity and chloride concentration. Energy 
and cost analyses were also presented. The detailed 
explanation is given as follows.

3.1. The Effect of Current Density on Removal Efficiencies
The electrochemical reactor was operated under 

different current density (50, 75, 100, 150 A/m2) 
conditions. COD and color removal efficiencies as well 
as variations of the chloride concentration and solution 
conductivity were affected when the current density 
was increased. The COD and color removal efficiencies 
changed in the range of 73.6%–79.1% (Fig. 2A) and 
21.7%–80.6% (Fig. 2B) for 50–150 A/m2 current density, 
respectively. Chloride concentration and solution 
conductivity changed in the range of 70.4–212.7 mg/L 

(Fig. 2C) and 128–144 mS/cm (Fig. 2D) for 50–150 A/
m2 current density, respectively. pH increased from 11.4 
to 11.8 when the applied current density was increased 
from 50 to 150 A/m2 (Fig. 2E). The results showed that 
the COD and color removal efficiencies decreased when 
the applied current density reached up to 150 A/m2, 
denoting that the electrogeneration rate of hypochlorite 
decreased. It is well known that chlorides (Cl-) are the 
most widespread species for the mediated oxidation and 
textile dye bath wastewater includes chlorides which can 
be easily converted into chlorine (Cl2) and hypochlorite 
according to the reaction of Eq. (2) at the anode (25). 
Additionally, the main reaction at the cathode is given in 
Equation (3) (26).

22 2Cl Cl e− −→ +                                                  (2)

2 2 22 2H O e H OH� � �� �                             (3)

The discharged Cl2 gas is hydrolyzed and ionized as the 
reactions given in Eq. (4) and Eq. (5);

Cl H O HOCl H Cl2 2� � � �� �                                            (4)

−+ +→ OClHHOCl                                             (5)

In addition, the side reactions occurred in anode via the 
formed O2 which caused the formation of chlorate (ClO3

-) 
according to Eq. (6) and Eq. (7);

2 4 4
2 2

H O H O e� � �� �                      (6)

6 3 3 2 6 4 2 6
2 2 3

OCl H O O H Cl ClO e� � � � �� � � � � �/   (7)

At higher pH (11.1 in our case), OCl- species controls 
the oxidation reaction and enhances the color and COD 
removal efficiency (22, 27). Although hypochlorite 
(ClO−) is the key product, some intermediate reactions 
such as chlorine (Cl2) and hypochlorous acid (HOCl) 
are also formed (28). These reactive species tend to react 
quickly with many organic compounds and promote their 
mineralization (29). 

At the end of the reaction, we did not observe any sludge 
in the reaction medium and any electrode solubility in 
this study. 

3.2. The Effect of Solution pH on Removal Efficiencies
The electrochemical reactor was operated under 

different pH (6, 8, 10, and 11) conditions. COD and color 
removal efficiencies as well as variations of the chloride 
concentration and solution conductivity were affected by 
changing the solution pH. The COD and color removal 
efficiencies increased in the range of 79.1%–95.5% 
(Fig. 3A) and 80.6%–95.5% (Fig. 3B) for solution pH of 
6–11, respectively. Chloride concentration and solution 
conductivity changed in the range of 106.3–35.4 mg/L 
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(Fig. 3C) and 144–131 mS/cm (Fig. 3D) for solution pH 
of 6–11, respectively.  However, pH increased from 6.3 to 
11.6 when the solution pH was increased from 6 to 11 

(Fig. 3E). 
HOCl supplies 84% of the ionic species at pH 6.8, but 

only 0.34% at pH 10. The primary species is the ClO- ion 
at pH 10 (30). In our study, we obtained lower COD and 
color efficiencies at low pH value (pH=6) compared to 
higher pH values except for pH=11. It can be explained 
that ionization of HOCl species decreases at lower pH 
values, leading to a decrease in the oxidation efficiency. 
The reaction of Cl2 in acidic and alkaline medium is given 
by Equation (8) and Eq. (9).

Cl H O HClO H Cl2 2� � � �� � (acidic medium)      (8)

Cl OH ClO Cl H O2 22� � � �� � � (alkaline medium)     (9)

The reaction of −+ +↔ ClOHHClO  is incomplete at 
pH 5.0-8.5 and both species are present to some degree 
(31). When the pH goes down from 8 to 6, it is obvious 
that H+ ions become readily available again and the ClO-  

ions return to HOCl, which is the active or killing form of 
chlorine. Therefore, this form of chlorine decreased the 
available oxidant and negatively affected COD and color 
removal efficiencies. 

The presence of chloride ions in the wastewater causes 
an increase in contaminant removal efficiency because of 

the formation of active chlorine. In an alkaline medium, 
the hydrolyzed Cl2 gases produce the hypochlorite ions 
that can oxidize the organics in the anode and/or in the 
bulk of the solution (Eq. 10) (32, 33).

Organics OCl Intermediates Cl CO H O� � � � �� �
2 2

          (10)

3.3. Energy Consumption and Cost Analysis
The operating cost is one of the most important 
parameters for wastewater treatment plants. 

Generally, the cheapest and most effective processes 
are preferred for wastewater treatment plants (34). The 
formula of energy consumption is given by Eq. (11):

E I V t
VEO
R

�
� �                                                            (11)

where EEO (kWh/m3) is electrical energy consumption, 
V is voltage (V), I is current (A), t is time (h), and VR is 
wastewater volume (m3) (1 kWh = 0.074 US$ according 
to Turkish Electricity Distribution Company for the date 
05.06.2020). Energy consumptions for different current 
densities and solution pH values are given in Figs. 4A 
and 4C, respectively. Cost analyses for different current 
densities and solution pH values are shown in Figs. 4B 
and 4D, respectively. The optimum energy consumption 
and energy cost were calculated to be 36 kWh/m3 (Fig. 
4C) and 2.66 US$/m3 (Fig. 4D), respectively, for current 
density of 100 A/m2 and solution pH of 10. 

The photographs of treated textile dye bath wastewater 
are shown in Fig. 5. Color density decreased dramatically 
after 90 minutes of electrooxidation.   

Table 2 shows a performance comparison between 
the ACC electrode used in this study and the previously 
reported other electrodes for textile dye wastewater 
treatment using EO process. As shown, the use of 
ACC electrodes has considerable advantages over the 
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reported methods considering color and COD removal 
efficiencies. Additionally, using ACC electrodes has 
other advantages such as simplicity, cost-effectiveness, no 
sludge production, and environmentally-friendliness.

4. Conclusion
Textile wastewater may contain some toxic dyes and 

must be treated efficiently before being released into the 
receiving environment. Additionally, certain dyes are 
assumed to have carcinogenic effects on humans and 
living organisms. In the present study, optimization of 
operational parameters in the electrochemical oxidation 
process for treatment of textile dye bath wastewater using 
ACC electrodes was performed successfully. The effects of 
operational parameters such as current density, solution 
pH, and electrolysis time were investigated on COD and 
color removal efficiencies, as well as variations of chloride 
concentration and solution conductivity. High COD and 
color removal efficiencies (95.5%) were achieved at the 
current density of 100 A/m2 and solution pH of 10 for 
90-minute electrolysis time. Energy consumptions and 
energy cost were calculated to be 36 kWh/m3 and 2.66 
US$/m3, respectively. In the optimized experimental 
conditions, the treatment of textile dye bath wastewater 
by electrochemical oxidation method using ACC as an 
anode is suitable for the removal of color and COD. 
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