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Abstract
A reliable model for any wastewater treatment plant (WWTP) is essential to predict its performance 
and form a basis for controlling the operation of the process.  This would minimize the operation costs 
and assess the stability of environmental balance. This study applied artificial neural network-genetic 
algorithm (ANN-GA) and co-active neuro-fuzzy logic inference system (CANFIS) in comparison with 
ANN for predicting the performance of WWTP. The result indicated that the GA produces more 
accurate results than fuzzy logic technique. It was found that GA components increased the ANN 
ability in predicting WWTP performance. The normalized root mean square error (NRMSE) for ANN-
GA in predicting chemical oxygen demand (COD), total suspended solids (TSS) and biochemical 
oxygen demand (BOD) were 0.15, 0.19 and 0.15, respectively. The corresponding correlation 
coefficients were 0.891, 0.930 and 0.890, respectively. Comparing these results with other studies 
showed that despite the slightly lower performance of the current model, its requirement for a lower 
number of input parameters can save the extra cost of sampling.
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1. Introduction
Minimizing the adverse impacts of wastewater 

discharged into the surface water bodies on the 
environment has always been a challenge. Wastewater 
treatment plants (WWTPs) are designed to convert the 
wastewater into more environmentally friendly water and 
return it to the environment. Therefore, it is important 
for the managers and plant operators to know how the 
performances of the plants are and how efficiently they 
work.

At any WWTP, there is an incoming wastewater flow; 
this flow is treated before it is allowed to be returned 
to the environment, lakes, or streams (1). A standard 
wastewater treatment process consists of a primary 
treatment including physical removal of floatable and 
settleable solids and secondary treatment which is 
mainly the biological removal of dissolved solids. Some 
other treatment plants have a tertiary treatment option. 
These stages create a complex system in which it is hard 
to predict the output quality of the effluent. Physical, 

chemical, and biological processes are involved which are 
highly nonlinear and dynamic (2).

Models are tools that can help managers and decision-
makers to predict the effluent quality in advance and 
operate the plant more efficiently. The main challenge 
in a good modeling practice is firstly to find a suitable 
and practical model, secondly to measure the minimum 
number of input parameters for the model, and thirdly 
to predict with enough accuracy.  Most of the plants 
are operated based on experience and some small scale 
experimental results (2). Most of the pollutants, such as 
total suspended solids (TSS) and biochemical oxygen 
demand (BOD) are correlated to the inflow (3). An online 
system for generating short-term sewer flow forecasts was 
developed by Hernebring et al (4). Gernaey et al presented 
a more complex approach for phenomenological modeling 
of WWTP influent disturbance scenarios (5). Physically-
based deterministic models are the industry standards 
for wastewater processing modeling. Some researchers 
used simpler models such as regression models (6–8) to 
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reduce the complexity of the modeling process. In recent 
years, using intelligent models such as artificial neural 
network (ANN), machine learning, and fuzzy logic are 
more popular due to their simplicity in modeling process. 
They are data-driven model types; therefore, they need 
historical data to accurately predict the output. Selecting 
the right topology and model construction are the main 
challenges for these models especially when the short 
historical data are available.

Dogan et al studied the abilities of ANN model to 
improve the accuracy of BOD estimation. In this study, 
the potential of an ANN technique in BOD estimation in 
Melen River was examined by comparing the results with 
observed BOD. From the obtained results, an ANN model 
appears to be a useful tool for prediction of the BOD in 
Melen River (9). In the study by Güçlü and Dursun, three 
independent ANN models trained with backpropagation 
algorithm were developed to predict effluent chemical 
oxygen demand (COD), suspended solids (SS) and 
aeration tank mixed liquor SS concentrations of 
Ankara central WWTP (10). Elmolla et al examined 
the implementation of ANN for the prediction and 
simulation of COD removal from antibiotic aqueous 
solution by the Fenton process and is very close to the 
experimental results with correlation coefficient (R2) of 
0.997 and mean square error (MSE) of 0.000376 (11). 
Estimation of oxygen demand levels using ultraviolet–
visible (UV-Vis) spectroscopy and results showed that in 
most cases, the proposed technique (UV-ANN) has the 
best performance. The predicted values of BOD and COD 
using UV-ANN model were very close to values obtained 
using the standard models (12). 

WWTP of Gorgan, with the capacity of 686 L/s to service 
more than 500 000 people per day, is of great importance. 

Considering numerous problems in the registration 
and measurement of wastewater quality such as BOD, 
COD and TSS, the main aim of the present study was: 
1) to find the optimized topology of the ANN and new 
regression models for prediction of complex wastewater 
quality data, 2) to select the best model in prediction of 
the wastewater quality data, and 3) to evaluate the results 
of the ANN, artificial neural network-genetic algorithm 
(ANN-GA), and co-active neuro-fuzzy logic inference 
system (CANFIS) in the prediction of BOD, COD and 
TSS removals and selection of the optimized topology. 
Using this model can reduce the cost of the experiment. 
It was also more efficient in wastewater treatment by 
predicting the parameters output based on wastewater 
input parameters.    

2. Materials and Methods

2.1. Study Area
The data set used in this study was gathered through 

continuous monitoring of samples from Gorgan WWTP, 
Golestan, Iran (36°52’40”N 54°26’12”E). This WWTP 
was constructed and came into operation in 2014. Fig. 
1 shows the location of the WWTP. The wastewater 
quality parameters were measured in Gorgan Wastewater 
Treatment Laboratory from April 2014 to October 2015. 
Based on measured values of different variables, input 
factors (variables) of the treatment including pH, TSS, 
charge (Q), BOD, and COD were selected for the model 
development. The output parameters of treatment were 
BOD, COD, and TSS. The weekly measuring of seven 
wastewater quality parameters was conducted during 2 
years (2014–2015). 

Statistical values of the wastewater quality parameters 
are presented in Table 1. In this table, Xmean, Xmax, Xmin, 

Fig. 1. Location of Gorgan WWTP.
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SDx, and CV indicate the mean, maximum, minimum, 
standard deviation, and coefficient of variation of the data 
set, respectively.

Fig. 2 shows simple structure of the used ANN in this 
study with 5 neurons in the input layer and 3 neurons in 
the output layer.

Tangent hyperbolic (Tan.) activation function and 
learning rules of Levenberg Marquardt (LM) algorithm 
were used in this study. The LM algorithm is one of 
the most appropriate higher-order adaptive algorithms 
known for minimizing the error of a neural network. It is 
a member of a class of learning algorithms called “pseudo-
second-order methods” (13). Finally, the best structure 
with different number of neurons in hidden layers was 
determined using trial and error procedure.

2.1.1. Adaptive GA-ANN
Principles of GA were presented by Holland (14) at the 

University of Michigan, USA. GA, as a particular class 
of evolutionary methods that use techniques inspired by 
Darwin’s theory of evolution and evolutionary biology, 
is a search technique used to find exact or approximate 
solutions to optimization and search problems (15). 
Techniques inspired by evolutionary biology used in 
GA are inheritance, mutation, selection, and crossover. 
GA is implemented in a computer simulation in which 
a population of abstract representations (chromosomes 

or the genotype of the genome) of candidate solutions 
(individuals, creatures, or phenotypes) to an optimization 
problem evolves toward better solutions. GA can be 
a learning algorithm for training ANNs to adjust the 
weights of the connections. In this study, the learning 
rate, momentum rate, and the number of neurons in the 
hidden layer were considered as genes in the chromosome 
(16). The goodness or fitness which is inversely related to 
the mean square error of the ANNs outputs was used to 
test the selected topologies in each trial.

The training performance of ANNs using GA starts by 
initializing the connection weights and the input layer 
nodes. After estimating the output values at the output 
layer, the global error is then calculated as the fitness 
value of the objective function. The procedure is repeated 
and when the global optimal solution is reached after a 
sufficient number of generations, the procedure stops. It 
is notable that a generation in GA is highly analogous to 
iteration in the backpropagation algorithm, and the goal 
in both algorithms is to update the connection weights. 
Once the connection weights are updated at the end of 
a generation, the fitness value of the objective function 
can be calculated. In this way, a fitter population of 
chromosomes is created. This procedure is repeated to 
reach a population of chromosomes with an acceptable 
fitness 17).

The training performance of the ANN using the GA 

Table 1. Wastewater Quality Parameters Measured During 2014-2015 in Gorgan WWTP

CV SDx Xmin Xmax Xmean Unit Data Set

0.41 48.63 83 320 117.38 mgL-1 BOD

0.28 50.83 101 343 179.57 mgL-1 TSS

0.17 1269.56 5284 11519 7631.62 m3h-1 Q

0.03 0.24 7.04 7.94 7.46 -- pH

0.017 93.16 171 628 555.193 mgL-1 COD

Abbreviations: COD, chemical oxygen demand; TSS, total suspended solids; BOD, biochemical oxygen demand. CV: coefficient of 
variation SD: standard deviation  Q: charge
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Fig. 2. Developed ANN Structure in WWTP. 
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has two parts. The first part uses training data to train 
the ANN. The second part uses the developed ANN in 
the first part to test the entire range of the smoothing 
factor for the optimal operation over the testing data. The 
GA can produce the ANN which can be operated best 
over the testing data. However, when the ANN is trained 
using the GA, it requires much more time than when the 
backpropagation algorithm is used as a search technique 
(17).

2.1.2. Co-active Neuro-fuzzy Inference System 
Among the new techniques of modeling, fuzzy systems 

have a special place. The fuzzy expert system consists of 
linguistic rules relating the membership functions of the 
input variables to the membership function of the output 
variable. A series of IF-THEN statements relate the input 
to the output variables. In this study, fuzzy logic was 
used as CANFIS model. The CANFIS model integrates 
adaptable fuzzy inputs with a modular neural network to 
rapidly and accurately approximate complex functions. 
Fuzzy inference systems (FISs) are also valuable, as they 
combine the explanatory nature of rules (membership 
functions) with the power of ANNs. These types of 
networks solve problems more efficiently than ANNs 
when the underlying function to model is highly variable 
or locally extreme (18). The characteristics of CANFIS 
were emphasized by the advantages of integrating ANNs 
with FIS in the same topology (19). Takagi–Sugeno fuzzy 
structure (20) was preferred in this article. In addition, the 
membership function used in this study was the Gaussian 
fuzzy axon type which uses a Gaussian-shaped curve as its 
membership function to each input neuron.

For modeling, the experimental data sets were divided 
into a training set (80% of the data) and validation set 
(20% of the data set). NeuroSolutions version 5 was used 
for training and testing of the network. In NeuroSolutions, 
the criteria used to evaluate the fitness of each potential 
solution are the lowest cost achieved during the training 
run (13). To avoid overtraining, the early stopping 
technique was used in training (21).

2.2. Evaluation Criteria for ANN, CANFIS and ANN-
GA Predictions

Various structures were tried to find the optimal 
ANN models. The normalized root mean square error 
(NRMSE), mean absolute error (MAE) and average 
absolute error (AAE) were used for evaluating the models. 
NRMSE, MAE and AAE values close to 0 indicate an 
optimal model. The NRMSE, MAE, and AAE are defined 
as:
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Correlation coefficient (r) is a common criterion for 
goodness of fit for regression models (22). It is calculated 
as follow:
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Where Xi and Yi are the observed and estimated values 
of ith, respectively, X  and Y  are the average of Xi and 
Yi, and n is the total numbers of data.

3. Results and Discussion
For evaluation of WWTP performance, the values of 

BOD, COD, and TSS in input and output of treatment 
were compared. Fig. 3 shows wastewater treatment 
performance.

As Fig. 3 shows, the values of BOD, COD and TSS in 
output treatment have decreased greatly. The performance 
evaluation indicated that 95.3% COD removal, 90.0% 
TSS removal and 97.3% BOD removal efficiencies were 
achieved. These values are in line with other studies (23).

To find the interactions between different variables, 
correlation coefficient values were estimated as shown 
in Fig. 4. shows that the maximum correlation exists 
between input TSS and output TSS (0.476).

The statistical criteria of NRMSE, MAE, and AAE for 
optimized structure of ANN, ANN-GA, and CANFIS in 
prediction of each parameter are given in Table 2. 

Table 2 indicates that the structure of Tanh transfer 
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function with LM learning algorithm and 10 neurons 
in hidden layer is the best ANN structure and it has the 
lowest errors.

The best ANN results in the prediction of COD 
were as follows: NRMSE = 0.16, MAE = 2.04 mg/L, and 
AAE = 0.120. Optimizing the ANN results using AAN-
GA improved the results and reduced the error values. As 
can be seen in Table 2, the NRMSE, MAE and AAE values 
of COD parameter are 0.15, 1.46, and 0.072, respectively. 
The same results were obtained for the prediction of 
TSS and BOD. The NRMSE, MAE and AAE values 
of ANN in the prediction of TSS were 0.25, 5.41, and 
0.234, respectively. However, the use of ANN-GA model 
decreased NRMSE, MAE and AAE values to 0.19, 1.82, 
and 0.106. Regarding BOD, ANN-GA results were better 
than ANN. The values of NRMSE, MAE, and AAE were 

0.19, 0.69, and 0.140, respectively. In contrast, ANN-GA 
results were 0.15, 0.49, and 0.088. However, the use of 
fuzzy logic did not cause any improvement in any of the 
parameters. The error values in the prediction of all three 
parameters by CANFIS model were higher compared to 
ANN results. These results are consistent with the results 
of a previous study (17) in which better performance 
was observed using ANN-GA compared to CANFIS to 
improve the prediction of evapotranspiration. Moreover, 
another study showed that using GA-ANN model is better 
than ANN model for runoff prediction (24).

Moreover, the statistical criteria presented in Table 2 
showed that the developed model was more accurate in 
predicting COD compared to BOD and TSS. The average 
value of NRMSE for COD was 0.18, while the average 
NRMSE values for TSS and BOD were 0.26 and 0.20, 
respectively.

With regard to the optimized ANN, ANN-GA, and 
CANFIS structures, estimated and observed values of 
COD, TSS, and BOD as well as time series and linear 
model fitted the data were presented in Figs. 5, 6, and 7, 
respectively.

A comparison of the observed and estimated COD 
concentrations is shown in Fig. 5 in time series and 
scatter plot with regression line. It can be seen from the 
graphs that the ANN-GA model for COD closely follow 
the observed values. The scatter plot also confirms this 
(Fig. 5). It can be clearly seen from the scatter plots that 
the ANN-GA COD has a higher r value (0.891) compared 
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Fig. 4. Correlation Coefficient Between Input and Output Data of Treatment. 
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to ANN COD (0.851) and CANFIS COD (0.700). The 
difference between the measured and calculated values in 
some parts is due to the influence of factors other than 
5 factors chosen as input parameters on the output of 
the models. Parameters such as climate, inflow rate, and 
temperature could also impact the results. Some of these 
parameters were not available for this research and could 
not be used in the models. On the other hand, using more 
input parameters would make the models more complex 
which is in contradiction with the ANN concept which 
uses simple structure. Therefore, although the use of 
more parameters can reduce the difference between the 
estimated values and observations, it would increase the 
cost of input data collection. In a study by Güçlü and 
Dursun in 2010 (10), the correlation coefficient was 
calculated as 0.85 for COD modeling. They used 8 input 
parameters which include flow rate, return activated 
sludge, waste activated sludge, DO, COD, SS, total 
Kjeldahl nitrogen, and COD load in modeling process 

but in the present study, five parameters were used. There 
is no significant improvement in their model using extra 
input parameters. In a study, Pai et al found a prediction 
accuracy of 48.22 % for COD (25).

The scatter plots of observed and simulated TSS using 
ANN, ANN-GA, and CANFIS are presented in Fig. 6. 
The results indicate that ANN, ANN-GA, and CANFIS 
models could produce satisfactory results. The best results 
for the ANN, ANN-GA, and CANFIS models were r = 
0.863, r = 0.93, and r = 0.670 for total data, respectively.

As Fig. 6 shows, approximately 93% of the data 
estimated with high accuracy and the low accuracy for 
the remaining 7% could be affected by unaccounted 
parameters. This low accuracy can be seen with higher 
degree in CANFIS model. The results of a study by Tümer 
and Edebali in 2015 (7) indicated that ANN model was 
more applicable for predicting TSS with r=0.96; however, 
they used more parameters as input for predicting TSS. 
These additional input parameters increased the accuracy. 
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Table 2. Performance Results for COD, BOD and TSS Prediction by ANN, ANN-GA, and CANFIS Models

Model MF AF LA Structure Parameter NRMSE (-) MAE (mg/L) AAE (-)

ANN

-- Tan LM 5,10,3 COD 0.16 2.04 0.120

-- Tan LM 5,10,3 TSS 0.25 5.41 0.234

-- Tan LM 5,10,3 BOD 0.19 0.69 0.140

ANN-GA

-- Tan LM 5,10,3 COD 0.15 1.46 0.072

-- Tan LM 5,10,3 TSS 0.19 1.82 0.106

-- Tan LM 5,10,3 BOD 0.15 0.49 0.088

CANFIS

Bell Tan LM 2,2,2,2,2 COD 0.23 2.68 0.132

Bell Tan LM 2,2,2,2,2 TSS 0.34 5.42 0.242

Bell Tan LM 2,2,2,2,2 BOD 0.25 0.94 0.199

Abbreviations: ANN, artificial neural network; GA, genetic algorithm; COD, chemical oxygen demand; TSS, total suspended solids; BOD, biochemical oxygen 
demand; NRMSE, normalized root mean square error; MAE, mean absolute error; AAE, average absolute error; CANFIS, co-active neuro-fuzzy logic inference 
system; Tan, Tangent; LM, Levenberg Marquardt; MF, Membership Function; AF, Activation Function; LA, Learning Algorithm.. 
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On the other hand, they increased the cost of sampling 
and analysis. In addition, the developed model in this 
study can simultaneously predict 3 output parameters.

Fig. 7 illustrates the scatter plots for the ANN, ANN-
GA, and CANFIS models for BOD. The proposed ANN 
and ANN-GA models have well learned the nonlinear 
relationship between the input and the output variables 
with r values of 0.802 and 0.890, respectively. Fig. 7 
illustrates that the simulated and observed BOD values 
were closely clustered along the line for both models. 
Therefore, both ANN and ANN-GA models were capable 
of accurately predicting BOD using the minimum input 
parameters.

In this study, the correlation coefficient (r) values ranged 
from 0.663 to 0.890 for BOD. Another study showed that 
the correlation coefficient value of the selected ANN nodes 
in the input layer including water pH, total alkalinity, total 
hardness, total solids, COD, ammoniacal nitrogen, nitrate 
nitrogen, Cl, PO4, K, and Na for predicting BOD was 0.87 
(26). In the present study, only 5 input parameters which 
are easy to measure were successfully used for COD, TSS, 
and BOD estimation at the same time.

4. Conclusions 
The results indicated that the use of GA technique can 

improve the ANN predicted results. However, the fuzzy 
logic technique showed the lowest performance. The 
study indicated that the ANN-GA can predict the plant 
performance with correlation coefficient (r) between the 
observed and predicted output variables reached up to 
0.90. Moreover, ANN-GA provides an effective analyzing 
and diagnosing tool to understand and simulate the 
non-linear behavior of the plant, which can be used as a 
valuable performance assessment tool for plant operators 
and decision-makers. The selected model structure 
had the highest correlation value and the least error for 
prediction of COD, TSS, and BOD within one single 
model. Therefore, the model developed in this work has 
an acceptable generalization capability and accuracy. As 
a result, the neural network modeling could effectively 
simulate and predict the performance of WWTP.
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