
1. Introduction
Many decades ago, satisfying consumer water demand 
with sufficient quality was one of the major concerns 
for water supply companies and utilities. According 
to the literature, predicting water demand can help to 
provide users with quality water in adequate volumes at 
reasonable pressure (1). The challenge of water demand 
prediction is of particular interest in arid/semi-arid 
cities, because of water shortages which usually occur in 
dry seasons (2). In the case of supervised learning, one 
of the most widely applied techniques used for training 
artificial neural network (ANN) is a back-propagation 
algorithm with feedforward networks. Maier and Dandy 
(3) argued that the geometry of ANNs is rarely addressed 
in the papers and network parameters like learning rate, 

transfer function, and error function were disregarded 
or rarely considered. It is also noteworthy to mention 
that the words “learning” and “training” in ANNs are 
equivalent to the parameter estimation phase in statistical 
models. Water demand prediction can have many benefits 
such as pressure management in the water distribution 
system and avoiding water leakages (1). Ghiassi et al(4) 
utilized the DAN2 model to predict short-term, medium-
term, and long-term urban water demand and compared 
the performance of DAN2 with that of the ANN and 
autoregressive integrated moving average (ARIMA). 
The results indicated that the DAN2 model had better 
performance than ARIMA and ANN. Adamowski and 
Karapataki (5) compared multiple linear regression (MLR) 
and ANN for peak urban water demand forecasting in 
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Abstract
To keep the balance between demand and supply, methods based on the average per capita 
consumption were usually applied to predict water demand. More complicated models such 
as linear regression and time series models were developed for this purpose. However, after 
the introduction of artificial neural networks (ANNs), different applications of this method were 
used in the field of water supply management, especially for urban water demand prediction. In 
this study, multiple types of ANNs were studied to understand their suitability for a residential 
complex water demand prediction in the city of Qom, Iran. The results indicated that time 
series ANN (TANN), nonlinear autoregressive network with exogenous inputs (NARX), group 
method of data handling time series (GMDHT), and their wavelet counterparts (i.e., w-TANN 
and w-NARX) exhibited varying degrees of performance. Among the aforementioned models, 
w-NARX performed the best (based on the average overall error) with the test set root mean 
squared error (MSE) of 49.5 (m3/h) and R of 0.93, followed by the GMDHT model with the test 
set MSE of 104 (m3/h) and R of 0.97 and w-TANN with the test set MSE of 68.8 (m3/h) and R of 
0.91. In addition, the feedback connection in NARX compared to TANN demonstrated overall 
performance improvement. 
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Nicosia. Different learning algorithms were evaluated 
for training the ANN model. The results suggested that 
the Levenberg–Marquardt algorithm provided a more 
accurate prediction than MLR and the other types of 
ANNs.

Over time, different architectures of ANN were 
developed. For example, feedforward networks have drawn 
lots of attention since the early stages of development. 
In this study, a nonlinear autoregressive network with 
exogenous inputs (NARX), NARX coupled with wavelet 
transform (w-NARX), time-delayed ANN (TANN) and 
its wavelet version (w-TANN), and group method of data 
handling time series (GMDHT) were trained to predict 
the daily water demand in Mahdie Residential Complex 
(MRC) in Qom, Iran.

2. Methods
2.1. Study Area
Qom (capital city of Qom province), one of the most 
populous cities in Iran, is located in the center of Iran 
with a semi-arid climate (6-9). Historically, the water 
supply of Qom has been of great importance due to the 
arid environment of this city and water scarcity. The 
first water distribution system of Qom was designed and 
constructed in 1964 by connecting four wells using 83 km 
cast iron pipes along the Qomrood River and pumping the 
water into the two elevated concrete tanks with a capacity 
of 2000 m3. After a while, with a growing population, the 

number of wells increased to 34. In 1994, 15 Khordad 
Dam was built to ensure the supply of standard drinkable 
water to the consumers. On average, in the summer 
season, the city’s water demand is estimated to be 4600 
m3/s, but in the winter, this number decreases to 2900 
m3/s (10). Therefore, the water demand for the whole city 
can potentially be a function of climatic parameters. Fig. 1 
presents an aerial view of the study area.

The MRC is chosen as a case study due to its recent 
construction, low leakage rates, and its distinction as 
a separate pressure zone within the city. The water 
distribution network characteristics of the MRC in Iran are 
distinct due to the negligible impact of hydraulic difficulties 
on the urban water demand (UWD). Consequently, the 
flow rate data accurately represents the unadulterated 
UWD. According to the Ministry of Energy in Iran (2), the 
estimated daily per-capita water consumption of the MRC 
during the study period is around 288 L. This amount is 
approximately 68 L more than the national average and 
12 L less than the water consumption in Tehran, the 
capital of Iran. The complex encompasses an expansive 
green space spanning over 2 km2 and accommodates over 
3000 inhabitants, a significant portion of whom are those 
engaged in the profession of preaching Islam and cultural 
advocacy.

2.2. Technical Properties of the Distribution Network
The main water supply of the city is provided by 

Fig. 1. The Study Area
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Koucherey and 15 Khordad dams with a capacity of 207 
and 165 MCM, respectively. Other water supply sources 
are groundwater, namely Aliabad wells and Qomrood 
wells. The water of MRC is supplied by a tank which is 
usually refilled every 24 hours. 

2.3. Experimental Setup
The water flow data was received from the Water and 
Wastewater Company. The dataset is recorded every hour 
from May 13, 2016, to February 19, 2017, which is equal 
to a 6768-hour observation. Since there were only a few 
records of precipitation, rainfall occurrence, and amount 
were not used as explanatory inputs of the model. 

The extraction of useful information from a large 
dataset has been thoroughly investigated in the literature 
(11). Input variable selection has been a significant 
challenge in any research related to the topic of prediction 
(12). To meet this challenge, the iterative input selection 
(IIS) algorithm was used to select the most relevant inputs 
describing the water demand dataset (13). This algorithm 
has proved to be capable of choosing the most appropriate 
and non-redundant input in several testing conditions 
(13). 

2.4. Predictive Models
2.4.1. MLP Neural Network
One of the most widely applied architectures of ANNs is 
the multi-layer perceptron feedforward neural network 
(MFNN). This popularity may stem from the ability 
of MFNN to approximate any complex nonlinear 
system dynamics. This method is a supervised learning 
method that estimates and adjusts weights and biases to 
approximate the output from the given inputs. In each 
epoch, it reduces the error between the estimated and real 
output by minimizing the cost function. According to the 
literature, a three-layer MFNN (input layer, one hidden 
layer, and output layer) can approximate almost all types 
of system behavior (3, 14).

Equation 1 and Equation 2 illustrate the mathematical 
basis of a three-layer MFNN (15).
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where nH is hidden layer node, no is the output layer 
node, n1 is the input layer node, xi (t) is the input to node i 
of the input layer, yi (t) is the quantity computed by node 
j of the hidden layer, and Zk (t) is the output computed 
by node k of the output layer. h

ijW  controls the strength 
of the connection between input node i and hidden node 
j controls the strength of the connection between hidden 
node j and output node k. Input and hidden layer bias are 
considered x0 = 1 and y0 = 1 to permit adjustment of the 

mean level at each stage.

24.1.1. TANN
The time series version of ANN (i.e., TANN) was used in 
this study. Hansen and Nelson (16) suggested that due to 
the ability of ANNs to deal with non-linear cyclic patterns, 
they are good alternatives to handle time-series variations 
(3). Considering a stationary neural network, a function to 
describe the relationship between inputs and outputs can 
be written as Equation 3:

( )1 2 3   ,  ,  ...,  ny f x x x x=                Eq. (3)

where xn is an independent variable, and y is a 
dependent variable. It is considered that this type of 
ANN is functionally equivalent to non-linear regression 
models. However, to make an ANN extrapolate beyond 
the range of data, another function is needed to forecast 
future data based on past observation as an input. This is 
mathematically achieved by Equation 4:

( )11   ,  ,   ,  t t t t ny f y y y− −+ = …                     Eq.(4)

where yt is the observation at time t. The t in the training 
process is called lag or tapped delays.

2.4.2. NARX
Historically, moving average (MA), autoregressive moving 
average (ARMA), and linear parametric autoregressive 
(AR) have been widely used among researchers and 
scientists. However, due to the linear nature of ARMA, 
it may not perfectly fit nonlinear time series systems 
(17, 18). With the emergence of feedforward neural 
networks, it was found that by connecting each neuron 
to the next layer, the previous layer, the same layer, and 
even themselves (recurrent neural networks), they can 
implicitly model dynamical system properties (3). NARX 
neural networks are proven to learn the behavior of the 
system more efficiently. Compared to other network 
geometries, NARX neural networks generally converge 
faster and generalize better (19). It is a type of recurrent 
neural network that can capture both linear and nonlinear 
relationships between input and output data over time. 
NARX models are particularly useful when dealing with 
dynamic systems where the current output depends not 
only on past inputs and outputs but also on exogenous 
(external) inputs (20). The scheme of the NARX neural 
network with a feedback connection is shown in Fig. 2.

2.4.3. Wavelet Analysis
Wavelet analysis (WA) is a mathematical tool to extract 
specific information from data. These data are usually hard 
to interpret because of their chaotic structure. Examples of 
these data are noisy images, high-frequency signals, and 
perturbed time series data like Mackey-Glass chaotic time 
series, and so on. 

WA has been applied to different types of applications, 



Avicenna J Environ Health Eng, 2023, Volume 10, Issue 288

Rezaali et al 

including but certainly not limited to signal de-noising, 
image processing, and time series decomposition with 
flying colors (21). The coupled form of wavelet analysis 
and neural networks has been widely used in different 
applications. However, many of these studies used 
wavelet transform (WT) functions incorrectly in terms 
of using future data when decomposing the time series 
data, selecting the level of decomposition and wavelet 
filters inappropriately, and data partitioning (22, 23). To 
summarize, it is essential to carefully select the type of 
WT, wavelet filter and scaling, level of decomposition, and 
data partitioning.

2.4.4. GMDHT
GMDH algorithm is based on a category of the heuristic 
self-organizing method used in GMDH neural networks. 
Introduced by Ivakhnenko (24), GMDH is a technique 
for constructing an extremely high-order regression-type 
polynomial. This approach has the ability to establish a 
higher-level correlation for a user, based on the inputs 
and outputs of a system that is being analyzed by the 
user (25). In this study, the GMDH algorithm was used 
in MATLAB exactly based on the parameters which are 
defined by Ivakhnenko (26). Fig. 3 illustrates the general 
process of elimination of functions which describes the 
system dynamics less efficiently.

GMDH or multiple nonlinear regression can be used 
in different types of categories such as identification of 
physical laws, an approximation of multidimensional 
problems, pattern recognition, and so on (27).

GMDH neural network fits equation 5 (i.e., nonlinear 
polynomial regression of inputs as X and outputs as Y) 
where ɑ is the intercept, β is the coefficient, and k is the 
number of inputs or observations.

2 2
1 2 3 4               i j i j kY X X X X Xi Xjβ β β β β= + + + + +…+ɑ    Eq. (5)

Although GMDH and multiple nonlinear regression are 
similar in terms of using nonlinear regression (MNLR), 
GMDH is different from MNLR. GMDH uses equation 5 
to fit a regression to the target dataset. However, MNLR 
can use different types of nonlinear regressions. GMDH 
is a self-organizing method that applies the basic idea of 

a natural selection algorithm, while MNLR does not. It is 
also known as a polynomial neural network (28).

2.5. Model Development
Although there is no consensus about the optimal 
network architecture of ANNs, the importance of 
ANNs architecture in the performance of the model has 
never been questioned. Defining an optimal network 
architecture is one of the most challenging tasks in the 
modeling process. A reason for this might be that the 
performance of the neural networks is highly problem-
dependent (3); therefore, it is hard to define architecture 
as a global solution. However, there are some general 
guidelines to achieve better performance using a specific 
ANN-based model. In the following subsections, the 
detailed description and structure of all applied models 
are discussed.

2.5.1. Model Geometry
2.5.1.1. Model Inputs, Data Division, and Choice of Lags
The input data, including maximum daily temperature, 
wind speed, and cloud cover were considered as the inputs 
of the ANN models. Having this in mind, before using 
these parameters as inputs, they all underwent one-sample 
Kolmogorov-Smirnov test to study the distribution of data. 
The test results for all of the parameters indicated that the 
test rejects the null hypothesis at the 5% significance level. 
This means the distribution of data does not follow the 
Gaussian distribution. Thus, the Spearman correlation 
analysis was performed to investigate the relationship of 
these parameters with water demand data.

Fig. 2. A NARX Network With a Feedback Connection

Fig. 3. The General Process of the GMDH Neural Network
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Data division was performed by dividing data into three 
subsets: 70% for training, 15% for validation, and 15% 
for testing. Due to temporal dependencies of time series 
prediction, the data set was not shuffled before the training 
process (1, 29); therefore, the sequence of data remained 
the same as the inputs.

Before the data was used as input for the training process, 
all data were normalized between specific ranges based on 
the domain of the transfer function used. It is noteworthy 
to mention that all the models used in this paper were 
scripted in MATLAB (version 2017a). Equation 6 provides 
mathematical formulae of the normalization used in this 
study:

( ) ( )
( )

   min max min
min

max min

y y x x
y y

x x
− × −

= +
−

                                  Eq.(6)

where ymax is the maximum value for each row of y, ymin 
is the minimum value for each row of y, x is an N-by-Q 
matrix, xmin is the minimum value for each row of x, and 
xmax is the maximum value for each row of x.

2.5.1.2. Number of Hidden Layers and Nodes
Since the number of hidden layers and neurons is highly 
problem-dependent, there is no global number of layers 
of neurons to model the system dynamics. A high number 
of neurons can cause overtraining and produce unreliable 
performance results due to the inability of the model to 
generalize.

In this study, the number of layers and neurons was 
defined by a trial and error process. It was found that 
a network with one hidden layer and one neuron can 
approximate the input data efficiently.

2.5.1.3. Choice of Transfer (Activation) Function
Generally, the selection of transfer function is, to some 
extent, dependent on how much data are noisy and are 
highly non-linear (3). Since the weight initialization 
process in ANNs-based models is random, selecting 
the best model usually requires simulating the model 
multiple times and saving the model and its results for 
each simulation. To this end, the models were scripted 
in a way that in each simulation, the train, validation and 
test performance, outputs, and targets, and the NARX, 
wavelet-NARX (w-NARX), TANN, and wavelet-TANN 
(w-TANN) models are saved on the hard disk in a text file 
in space-delimited format. The number of the simulation 
was chosen by considering computational limitations. 
After 30 simulations, the best model was selected. This 
process was divided into four main combined network 
configurations with a hyperbolic tangent sigmoid and 
symmetric saturating linear transfer function, log-sigmoid 
and linear transfer function, hyperbolic tangent sigmoid 
and linear transfer function, and sigmoidal and symmetric 
saturating linear transfer function in the hidden layer and 
output layer, respectively.

In this study, to conform to the demand of the transfer 
function (30) and to avoid saturation of the transfer 

function (31), the model with tansig transfer function was 
evaluated by the scaled range of [-0.9 0.9], and the model 
with logsig transfer function was evaluated by the scaled 
range of [0.1 0.9]. Fig. 4 shows the transfer functions 
applied in this study to evaluate network performance.

2.5.1.4. Choice of Optimization Method
In both of TANN and NARX models, the Levenberg–
Marquardt algorithm (LMA) was selected to train the 
model. This algorithm is based on the classic Newton 
algorithm with some modifications. The changes in the 
behavior of this algorithm at a different distance of local 
minima error enable this algorithm to converge faster to 
global minima error and escape from local minima error. 
Using LMA has several advantages over other algorithms 
such as gradient descent with momentum (GD) and 
conjugate gradient (CG) (32-35).

2.5.2. Wavelet NARX and ANN
The framework used in this study is based on the wavelet 
data-driven forecasting framework (WDDFF) method 
introduced by Quilty and Adamowski (22). To this end, 
the following subsections define the procedure used to 
apply WDDFF.

2.5.2.1. Selection of WT
There are two types of widely used WT for hydrological 
prediction, which do not consider future data for 
decomposition, including maximal overlap discrete 
wavelet transform and à trous (AT). However, since AT 
can be used for preprocessing both target and input data, 
in this study the authors proposed this WT (22).

2.5.2.2. Selection of Decomposition Level and Wavelet 
Filters
Considering the number of data available, the maximum 
decomposition level was used based on boundary-affected 

Fig. 4. Transfer Functions Used to Evaluate Overall Network Performance



Avicenna J Environ Health Eng, 2023, Volume 10, Issue 290

Rezaali et al 

coefficients (BAC) calculated by Equation 7:

( )( ) ( )( )2 1  1 1LBAC S= − × − +              Eq. (7)

where L is the maximum level of decomposition and S 
is the number of scaling coefficients. As the water demand 
data was available for 283 days, and BAC data were not 
to be used in the training process, selecting the correct 
number of L and S was very important. It was found 
that a Daubechies (db) filter of scale 3 and level 3 will 
provide sufficient data and efficiency (283–36 = 247) to 
train the network. The time series of the demanded data 
were decomposed by two filters: a low-pass filter to get 
approximation decomposition and a high-pass filter to get 
details of the signal decomposition. The data flow through 
the W-NARX and W-TANN is shown in Fig. 5.

Before using the data, 36 records of each lagged 
dataset (1 to 14) were eliminated to remove BAC. After 
normalization between -1 to 1, data is fed into NARX as 
an input.

2.5.3. GMDH
The input parameters for training the model included 
demand data, temperature, cloud cover, and wind speed 
in the previous two weeks. To apply GMDH model 
regression to the data, the Time Series Prediction tool 
using GMDH in MATLAB was used (36). The number 
of neurons was optimized in an additive stepwise mode 
by adding a neuron to find which model could provide 
the best performance. Similarly, the method of choosing 
the best delay and threshold value was done by a trial and 
error process.

2.5.3.1. Data Division
The data were divided into two groups, including training 
and testing groups. The least-squares algorithm was used 
to train 70% of the input data, and the rest of the data set 
(30%) was used for testing. 

2.5.4. Performance Evaluation Methods
All of the models underwent an identical performance 

evaluation process. Equations 8 and 9 were chosen to 
evaluate each model performance.

( )2

1

1  
n

i i
i

RMSE O P
n =

= −∑               Eq. (8)

( )2

1

1  
n

i i
i

MSE O P
n =

= −∑              Eq. (9)

where, n is the number of test cases, Oi is the true value 
of the target variable for the case i, and Pi is the respective 
prediction of the model for the same case.

3. Results and Discussion
According to the IIS input selection, maximum daily 
temperature, wind speed, mean daily cloud cover, holidays, 
and rainfall amount were selected as input variables by IIS. 
Conversely, cloud cover was excluded as a potential input 
for the proposed models (Fig. 6)

The technique of cross-correlation was employed to 
ascertain the temporal associations between the input 
variables and the data on water demand. This approach 
has been extensively employed in the determination of 
input delays (37-43). Fig. 7 shows the cross-correlation 
plot of the input variables and water demand data. 
Accordingly, rainfall amount at a time (t), wind speed 
at time (t), temperature at time (t-3), and holidays at 
time (t-14) had the highest correlation with the water 
demand observations. Similarly, Rezaali et al (2) found 
a significant correlation between temperature, holidays, 
and wind speed. Prasad et al (44) also implemented IIS for 
streamflow forecasting and found similar results. Both of 
these commonalities demonstrate the association between 
water flow rate and meteorological and calendar inputs.

3.1. Model Performance
As Table 1 and Table 2 suggest, the performance of TANN 
models is better than NARX models in the training 
phase. However, in the validation and test phases, NARX 
performance, on average, was better than TANN.

The results of wavelet coupled networks in each 
combination after 30 runs are provided in Table 3.

Fig. 5. Data Flow in the W-NARX and W-TANN



Avicenna J Environ Health Eng, 2023, Volume 10, Issue 2 91

Urban water demand forecasting 

Although all of the w-NARX models performed 
similarly, the tansig-satlins model performed best. This 
network also had the best average train, validation, and 
test performance among other combinations of transfer 
functions.

To provide a measure to compare the results of this 
study with those of other studies, the w-TANN model 
was investigated with different combinations of transfer 
functions. Table 4 provides some information about the 
mentioned combinations. It is noteworthy to state that 
the best model was selected by 30 times of simulations for 
each transfer function combination.

As Table 4 suggests, the models with tansig and purelin 

transfer functions in the hidden and output layers 
performed better than other combinations of transfer 
functions. Besides, by comparing these two tables, it will 
be evident that w-NARX models performed considerably 
better than w-TANN models. The reason for this could be 
the feedback connection in NARX models. The feedback 
connection may help the model to learn idiosyncrasies 
better than TANN does and therefore may help to learn 
the behavior of the consumers.

Heidari et al (45) found that NARX outperformed other 
models for the prediction of the spreading dynamics 
of different droplets on various substrates. In a similar 
case study of water demand prediction for 24 hours and 

Fig. 6. IIS Algorithm Output

Fig. 7. Cross-correlation Plot of the Input Variables
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1 week, Bata et al (46) proposed that NARX model with 
correlated exogenous parameters dropped the error by 
30% on average compared with a single-input model. It 
was also found that the length of the NARX training set 
had a negative correlation with the model performance for 
the above-mentioned lead time. This is in accordance with 
what was found in the current study, which is majorly due 
to the overfitting issue and the feedback connection in 
NARX models.

By trial and error, the configuration of the GMDHT 
was defined, that is: selection pressure lags, and train to 
test ratio. Compared to ANN-based time series models, 
GMDHT requires less time to fit nonlinear regression to 
the target data set. In this research, the GMDHT method 
was more consistent than the ANN model. This could 
be because of random weight initialization and other 
complexities related to ANN-based models. The results 
of the best GMDHT models with different configurations 
are provided in Table 5.

According to this table, the best GMDHT model was 
selected based on train, test, and R coefficient (i.e., model 
number 1). Compared to ANN-based models, w-NARX 

and some configurations of w-TANN performed better 
than the GMDHT model. However, the model easily 
outperformed TANN and NARX models. The outputs 
of the TANN, NARX, w-TANN, w-NARX and GMDHT 
models are shown in Figs. 8 to 12, respectively. Ebtehaj et 
al (47) found that GMDH model outperformed the feed-
forward neural network model and existing nonlinear 
regression models for discharge coefficient estimation. 
The agreement between the current research findings 
and those of Ebtehaj et al (47) stems from the fact that 
GMDH models according to their structure tend to avoid 
overfitting and stalling in local minima error.

As is shown in these figures, the performance of w-TANN 
and w-NARX is better compared to others. The frequency 
of errors is much lower in w-NARX than in w-TANN. 
Comparing the TANN/w-TANN and NARX/w-NARX 
indicates that coupling WT with NARX networks is about 
two times more efficient in improving the performance 
of the networks than TANN. Additionally, the GMDHT 
model was found to be more accurate than both NARX 
and TANN. Based on this, GMDHT might be a good 
alternative when wavelet analysis is not preferred.

Table 1. Performance of the Best TANN Models with a Different Combination of the Transfer Function in the Hidden and Output Layers

Hidden Layer Output Layer Train (MSE) Validation (MSE) Test (MSE) R2 Across All Data

Logsig Purelin 5.35E + 04 1.34E + 05 2.05E + 05 7.38E-01

Tansig Satlins 8.54E + 04 9.46E + 04 1.46E + 05 7.21E-01

Logsig Satlins 1.49E + 04a 2.91E + 05 3.14E + 05 7.11E-01

Tansig Purelin 5.47E + 04 1.75E + 05 1.94E + 05 7.23E-01

a = indicates the lowest error in train, validation, and test, and the highest correlation coefficient.

Table 2. Performance of the Best NARX Models with a Different Combination of the Transfer Function in the Hidden and Output Layers

Hidden Layer Output Layer Train (MSE) Validation (MSE) Test (MSE) R2 Across All Data 

Logsig Purelin 8.88E + 04 6.42E + 04 1.49E + 05 7.24E-01

Tansig Satlins 8.10E + 04a 7.37E + 04 1.45E + 05 7.34E-01

Logsig Satlins 9.46E + 04 8.79E + 04 1.07E + 05 7.16E-01

Tansig Purelin 1.08E + 05 6.01E + 04 1.09E + 05 7.01E-01

a = indicates the lowest error in train, validation, and test, and the highest correlation coefficient.

Table 3. Performance of the Best w-NARX Models with a Different Combination of the Transfer Function in the Hidden and Output Layers

Hidden Layer Output Layer Train (MSE) Validation (MSE) Test (MSE) R2 Across All Data MAPE

Logsig Purelin 2.66E + 03 2.50E + 03 2.83E + 03 8.72E-01 12.85%

Tansig Satlins 2.76E + 03 2.39E + 03 2.82E + 03 8.70E-01 12.92%

Logsig Satlins 2.57E + 03 2.28E + 03 2.45E + 03 8.80E-01 12.15%

Tansig Purelin 2.81E + 03 2.16E + 03 2.65E + 03 8.70E-01 12.76%

a = indicates the lowest error in train, validation, and test, and the highest correlation coefficient.

Table 4. Performance of Best w-TANN Models with a Different Combination of the Transfer Function in the Hidden and Output Layers

Hidden Layer Output Layer Train (MSE) Validation (MSE) Test (MSE) R2 Across All Data

Logsig Purelin 3.14E + 03 5.55E + 03 6.32E + 03 8.10E-01

Tansig Satlins 3.38E + 03 4.20E + 03a 4.41E + 03a 8.24E-01

Logsig Satlins 3.04E + 03 4.74E + 03 5.29E + 03 8.26E-01

Tansig Purelin 2.86E + 03a 4.85E + 03 4.74E + 03 8.35E-01

a = indicates the lowest error in train, validation, and test, and the highest correlation coefficient.
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Fig. 8. Observations vs. Best TANN Model Output with Sigmoidal Transfer Function in the Hidden Layer and Linear Transfer Function in the Output Layer

Fig. 9. Observations vs. Best NARX Model Output with Hyperbolic Tangent Sigmoid Transfer Function in the Hidden Layer and Symmetric Saturating Linear 
Transfer Function in the Output Layer

Table 5. Best GMDHT Model Output Configuration Results

Model Num. Selection Pressure Max. Num. Layers Number of Neurons Train (MSE) Test (MSE) R2 Across All Data

1 0.6 3 5 3.19E + 04a 1.09E + 04 9.33E-01

2 0.7 3 8 3.83E + 04 1.06E + 04 9.19E-01

3 0.8 4 12 4.19E + 04 1.47E + 04 9.03E-01

a = indicates the lowest error in train, validation, and test, and the highest correlation coefficient.
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Utilizing NARX models (as an example of the best-
performing model in this research) for predicting urban 
water demand offers a multitude of applications and 
advantages. These models facilitate precise demand 
forecasting by capturing intricate relationships between 
factors such as weather, population growth, and industrial 

activities. They enable real-time monitoring, enhancing 
the ability of water utilities to adapt to changing demand 
patterns. NARX models empower effective water resource 
management, support demand response programs, aid 
in leak detection, and assist in climate change adaptation 
(5, 48). Additionally, they contribute to sustainability 

Fig. 10. Observations vs. Best w-TANN Model Output with Hyperbolic Tangent Sigmoid Transfer Function in the Hidden Layer and Linear Transfer Function 
in the Output Layer

Fig. 11. Observations vs. Best w-NARX Model Output with Hyperbolic Tangent Sigmoid Transfer Function in the Hidden Layer and Symmetric Saturating Linear 
Transfer Function in the Output Layer
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planning, optimize infrastructure investments, and 
promote data-driven decision-making, leading to energy 
savings and overall improved urban water system 
efficiency (2).
4. Conclusion
In this study, the potential of using WA in urban water 
demand prediction for ANN-based models, such as 
TANN, NARX, and GMDHT, is addressed. Among all of 
the mentioned models, TANN had the lowest performance 
in terms of MSE and RMSE. The most accurate method 
was found to be w-NARX. However, the results of the 
GMDHT method were also promising, especially when 
compared to TANN and NARX. NARX neural networks, 
when coupled with WT, were about two times better than 
TANN when coupled with WT. 

The results of this research emphasize the fact that 
model structure plays an important role in model 
performance. The prominent examples of this role are 
the feedback connection in NARX models and the self-
organizing principles of GMDH models, both of which are 
investigated in this study. This experimental comparison 
indicates that NARX neural networks can be considered 
as an alternative in future studies. The main advantage 
of NARX neural networks when compared to TANN 
is the feedback connection which may help to learn 
idiosyncrasies better than TANN. 
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