
1. Introduction
Water is known as one of the most crucial and abundant 
resources on the planet (1). Water covers about three-
quarters of the earth’s surface. However, out of the total 
water available on the planet, about 97% is salt water and 
less than 3% is freshwater. Less than 1% of Earth’s water is 
freshwater that is directly available to humans, while two-
thirds or more of it is frozen in polar regions. The remaining 
unfrozen freshwater is mainly known as groundwater, with 
a small portion as surface water and atmospheric water 
(2). The rapid increase in population, the advancements 
in developing countries, and the mismanagement of water 
resources have caused a considerable increase in water 
use, leading to a warning of water shortage worldwide. 
Therefore, despite the technological progress of the present 

modern era, water-related issues persist as a daunting 
challenge of the 21st century (3). 

In the recent century, global water demand has 
incremented at more than twice the population growth 
rate (4). In these circumstances, water shortage is one of 
the most critical limitations of life, affecting domestic, 
industrial, and agricultural issues (5). According to a 
scenario,  the globe will face about 40% water shortage 
and/or supply-demand gap by 2030 (6). 

Among the various sources of water on earth, 
groundwater is of great importance. Groundwater is 
acknowledged as the primary precious natural water 
resource for irrigation, industrial and drinking water in 
many areas, especially in arid regions (7-9). Irrigation 
with poor-quality water can change  the physicochemical 
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Abstract
Acquiring information about groundwater quality is essential in developing management strategies. In 
this article, spatio-temporal variations of cations in groundwater in Esfarayen plain were investigated 
using data monitored in 134 groundwater wells, active in 1988, and 47 wells, active in 2019. To evaluate 
groundwater quality, interpolation methods have been used to interpolate existing limited spatial data. 
The performance of 8 current interpolation methods on the data for the two selected years (1988 and 
2019) was compared. Finding the optimum interpolation method for the considered groundwater quality 
parameters is essential. Cross-validation and three indexes of R2, mean absolute error (MAE), and root 
mean square error (RMSE) were used to compare the performance of the methods. By identifying universal 
kriging (UK) and global polynomial interpolation (GPI) methods as the optimum methods and using those 
for the selected years (1988 and 2019), spatial variation of the concentration of cations in groundwater 
across the plain has been presented. In 1988, the maximum concentration of the cations occurred in the 
southwest of the plain (about 80 mg/L), and the minimum concentration of the cations was observed in the 
northwest of the plain (approximately 8 mg/L). Similarly, in 2019, the highest concentration of the cations 
was found in the southwest of the plain (almost 64 mg/L), and its lowest concentration was observed 
in the northeast of the plain (roughly 13 mg/L). Moreover, temporal variations of the concentration of 
cations in groundwater from 1988 to 2019 have also been presented. The concentration of the cations 
increased by approximately 23 mg/L in the northwest and decreased to about 37 mg/L in the southwest 
of the study area from 1988 through 2019. According to the results, changes in the quality of groundwater 
are a complex problem and it is necessary to adopt proper strategies to reduce its adverse effects. 
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properties of the soil, reducing crop productivity and 
causing soil salinization (10,11). Currently, the reliable 
water resource has changed into an essential resource of the 
globe (12). It is reported that about 2.5 billion individuals 
worldwide rely on groundwater to satisfy their needs for 
drinking water (13).

Groundwater could be used cheaper and more 
effortlessly in underdeveloped countries. Moreover, 
groundwater has been even the only dependable water 
resource in many regions around the world. For example, 
Iran is known as an arid and semi-arid part of the earth 
(14). Groundwater is the main water resource for about 
50% of individuals living in Iran’s urban areas and 70% or 
more of Iranians that live in rural areas (15). This led to 
groundwater withdrawal in many areas in Iran, which in 
turn caused very harmful consequences (16).

The most critical consequences of groundwater overuse 
in tens of countries globally, including Iran, include land 
subsidence, saltwater intrusion into coastal aquifers, 
damage to ecosystems, and pollution of water resources 
(17). Therefore, it is essential to evaluate groundwater 
quality, especially in areas with a deep water table and 
regions with an extremely high water table, in which the 
soil that may suffer from some problems such as salinity 
and waterlogging (18). 

Evaluating groundwater quality needs interpolating 
the existing spatially distributed data, which is limited 
because sampling and mapping are complicated in Earth 
science. Geostatistics provides a valuable tool to handle 
spatially distributed data, including groundwater and 
soil pollution (18). In recent years, many scientists have 
compared different interpolation methods in various 
situations, and geographical information system (GIS) 
has been a powerful tool for analyzing groundwater 
quality. Additionally, some reports have compared the 
performance of other interpolation methods in estimating 
groundwater depth in arid regions (19-21). Moreover, Due 

to the health effects of some cations in the water (sodium, 
calcium, magnesium, potassium), the researcher focused 
on different aspects of these cations (22,23). Ramyapriya 
and Elgano found that based on the concentration of major 
ions, most of the groundwater samples were unsuitable for 
drinking purposes along the Cauvery River (24). Similarly, 
research demonstrates that due to the existence of ions 
such as magnesium (Mg) in the groundwater within the 
urban reach of Gridhumal river, groundwater is unsuitable 
for either drinking or irrigation purposes (25).

To our knowledge, there is no study investigating the 
concentration of cations in groundwater in Esfarayen plain. 
Therefore, the present work aimed to investigate the spatial 
and temporal variations of the cation concentration during 
1988-2019 in Esfarayen plain. Multivariate statistical 
analysis and GIS-based thematic maps were used to 
investigate Spatio-temporal changes in the concentration 
of cation in the groundwater. In this way, the optimal 
interpolation method was selected among inverse distance 
weighting (IDW), radial basis function (RBF), GPI, local 
polynomial interpolation (LPI), universal kriging (UK), 
ordinary kriging (OK), simple kriging (SK), and diffusion 
kernel (DK) methods to investigate cation concentration 
in Esfarayen plain. The accuracy of the estimations from 
those methods was compared, and the error values were 
analyzed. Secondly, the most efficient method was used 
to provide the Spatio-temporal variabilities of cation 
concentration in the groundwater of Esfarayen plain.

2. Materials and Methods
2.1. Study Area 
Esfarayen plain is a part of Iran’s central desert located 
in the south of the Northern Khorasan province of Iran 
(Fig. 1). Esfarayen plain has a semi-arid climate with 
almost cold winters and moderate summers. Like other 
arid and semi-arid plains of Iran, groundwater resources 
in this plain are vital for agricultural purposes, domestic 

Fig. 1. The Location of the Study Area.
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use, and industrial activities (26). The number of wells and 
coordinates of points is demonstrated in Tables S1 and S2 
(See Supplementary file 1). 

2.2. Interpolation Methods
The current work is categorized as a quantitative study 
that addresses the spatial and temporal variations of 
cation concentration in the groundwater of Esfarayen 
plain. Statistical analyses were carried out using MINITAB 
software version 18. The existing data were not normal in 
any of the selected years, considering the values of Skew 
and Kurtosis shown in Table 1. According to Table 1, in 
the year 1988, positive skewness of 2.89 indicates the bias 
in distributing data toward the right. A positive kurtosis 
of 11.64 implies the sharpness of data distribution and 
shows the closeness of the data to the average amount. 
Moreover, in the year 2019, the positive skewness of 1.011 
shows the bias in the distribution of the data toward the 
right; however, the negative kurtosis of -0.145 shows 
that the data are far from the average amount. For data 
normalization, the logarithmic transformation was applied 
using MINITAB software.

After normalizing the data, the interpolation methods 
of IDW, RBF, GPI, LPI, UK, OK, SK, and DK were applied. 
Normalizing the data was needed only for Kriging methods 
(DK, SK, and OK) (27). Finally, after the comparison of 
the results, the optimum method was selected and used for 
providing the Spatio-temporal variations of concentration 
of groundwater cations, including potassium (K), sodium 
(Na), magnesium (Mg), and calcium (Ca) in Esfarayen 
plain. Fig. 2 shows the flowchart used for the interpolations. 

2.2.1. Inverse Distance Weighting Method 
The IDW calculates the quantity of a parameter at the 
points of interest. This method is recognized as one of 
the well-known interpolation methods (28). The process 
uses a linear combination of values at sampled points 
weighted by an inverse function of the distances between 
the sampled points and the points of interest (29). IDW 
is often used in GIS for creating raster overlays from data 
points. If the data were on a regular grid, contour lines 
could be threaded across the interpolated values, and the 
map could be prepared either as a raster-shaded or vector 
contour map (10). The values are estimated using equation 
1 as below (30). 
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where
Z: the estimated value

Zi: the measured sample value at a point
di: the distance between Z and Zi
m: the weighting power 

It should be noted that if m is described as the rate that 
weights fall off with di, the m value commonly varies from 
1 to 5. In this study, the estimates of IDW were compared 
using typical weighting powers (including 1, 2, 3, 4, and 
5). Meanwhile, m was set to 1 for both of the selected years 
(27).

2.2.2. Radial Basis Function 
RBF methods are a series of exact interpolation techniques 
in which the surface must pass through all measured 
values (27). RBF values depend only on the distance from 
the origin and/or the distance from another point called a 
center (31). There are five different basis functions: thin-
plate spline, spline with tension, completely regularized 
spline, multiquadric function, and inverse multiquadric 
function (IMQ) (10). This study used IMQ for both years 
(1988 and 2019). 

2.2.3. Kriging Method
Kriging is a regression method known as a partial spatial 
interpolation method (32). Kriging is recognized as the 
best linear unbiased technique for estimating the value 
of regionalized variables at unsampled locations (27). It 
is based on the accessible data of regionalized variables 
and structural characteristics of a variogram. It can be 
classified into OK, UK, and SK. 
The estimator of SK is Equation 2 (30).
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n
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 = + −  ∑     (2)

where
n: the number of values used for estimation
m: the mean value
 ( )0

*
XZ : the estimated value at x0

Z(Xi): the measured value at Xi
λi: the weight assigned to the residual of Z(Xi); their 
summation is 1 (33)
The estimator of OK is given by (30):

( ) ( )
0

*
1
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=
=∑      (3)

where the variables definition of equation 3 is as equation 
2.

The UK has been known as a geostatistical technique for 
a linear unbiased estimator, considering the deterministic 
component. The covariance’s column vector for non-
statistic random function and variogram is given below 
(30). Therefore, the expected value of Z(X) at point Z is 

Table 1. Statistical Analysis of Groundwater Cations

Year No. Min Max Med Mean Skew SD Kurtosis Range

1988 135 6.3 205 20.3 30.3 2.89 28.58 11.64 198.7

2019 47 7.1 65.5 17.2 25.37 1.011 18.13 -0.145 58.4
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m(x) (by definition of the drift component):

( ) ( )EZ x m x  =        (4)

The interpolation expressions take the form of: ( )0

*
XZ  = 

Zα αλ        (5)

where 
n: the number of available sampling data

( )0

*
XZ : the estimated value

Zα: the measured value at sampling point α (α = 1... n) 
λα: the weighting coefficient, calculated with the unbiased 
and minimum error variance
The UK was the best method for the first selected year 
(1988); however, SK had the optimized performance for 
the second year chosen (2019).

2.2.4. Global Polynomial Interpolation 
Global polynomial interpolation (GPI) fits a smooth 
surface that is well defined by a mathematical function 
to the input sample points (34). The surface of GPI has 
gradual changes and catches coarse-scale patterns in the 
data (29). GPI has a smoothly varying surface using low-
order polynomials, which possibly depict some physical 
processes. However, the more complex the polynomial, 
the more difficult it is to ascribe physical meaning to it. 
Further, the measured surface is considered susceptible to 
outliers (extraordinarily low and high values), mainly at 
the edges (30). A first-order global polynomial fits a single 
plane passing through the data; a second-order GP fits a 
surface with a bend in it, allowing the surfaces representing 
valleys; a third-order GP allows for two bends; and so 
forth. However, when a surface has a different shape, a 
single GP will not fit it well (30).

2.2.5. Local Polynomial Interpolation 
Unlike GPI, which fits a polynomial to the whole 
surface, LPI fits numerous polynomials within a defined 
overlapping neighborhood (35). The search neighborhood 
can be described utilizing the search neighborhood dialog. 
The shape, minimum and maximum numbers of points, 
and sector arrangement can be specified. Alternatively, a 
slider can be used to define the width of the neighborhood 
in conjunction with a power parameter. The power 
variable will diminish the weights of the sample points 
within the neighborhood based on distance. Hence, LPI 
provides surfaces that account for more local changes (30). 

2.2.6 Diffusion Kernel 
Diffusion Interpolation refers to the fundamental solution 
of the heat equation, which describes how heat or particles 
diffuse with time in a homogeneous medium. Diffusion 
interpolation produces predictions on automatically 
selected grids (cells), while all other models in geostatistical 
analysis use triangles of various sizes (36).

2.2.7. Optimum Interpolation Methods 
Validation and cross-validation help the decision-making 
process to find out which technique gives the most reliable 
predictions. Many scientists have applied different training 
and testing sets to determine the most reliable method. 
They also used various comparison approaches to find the 
relationships between observed and predicted values and 
subsequently determine the best technique (10). In this 
study, the groundwater wells were divided into two groups 
randomly; in other words, 80 % of the sampling points were 
applied to develop the model, and 20% were used for an 
independent validation process. Three statistical indexes 
of mean absolute error (MAE), root mean square error 

Fig. 2. Flowchart of Interpolation Methods and Selection of the Best Method in Estimating Groundwater Cation.
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(RMSE), and R2 were utilized to investigate interpolation 
methods. The lowest RMSE and MAE and the highest 
R2 indicate the most precise predictions. Estimates are 
defined by applying the following equations (30,37): 
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       (8)

Where;
Zi: the predicted value 
Z: the observed value
N: the number of observations

3. Results and Discussion
Detailed statistics on groundwater cation measures for the 
selected years (1988 and 2019) are presented in Table 1. 

The groundwater cation concentration varied between 
6.3 and 205 mg/L in 1988 and between 7.1 and 65.5 mg/L 
in 2019.

Stochastic techniques are ordinarily reliable if the data 
have a normal distribution. Therefore, the data should be 
checked in advance for a normal distribution. According 
to Kolmogorov–Smirnov test, data of groundwater 
cations during the two selected years were not normally 
distributed. Accordingly, values were log-transformed 
prior to semivariance estimation. Their influential 
parameters should be determined to optimize the results 
of the interpolation methods.

In IDW method, each power, max neighbors, and sector 
type factor should be optimized. At first, the power should 
be optimized, and after optimizing the max neighbors 
and sector type, the power should be optimized again. 
The results of optimizing max neighbors and sector type 
for both selected years are illustrated in Table 2. As it is 
illustrated in Table 2, the IDW with 19 max neighbors, 
4-4D type sector, and 1 as the power was optimized in 1988. 
Moreover, in 2019, the IDW with seven max neighbors, 1 
type sector, and power of 1 was optimized.

RBF has 5 sub-functions, and all of them were used in 
the present study. The results of optimizing sub-functions 
and influential parameters of RBF for 1988 and 2019 are 
also presented in Table 2. In both of these selected years, 
RBF with sub-function of inverse multiquadric function 
yielded the best results. 

In the present study, three versions of kriging, i.e., SK, 
OK, and UK, were used in both of the selected years (1988 
and 2019). Essential characteristics and parameters of 
each version that must be considered are transformation 
type, the order of trend removal, kernel function, max 

neighbors, and sector type. The results of selecting the best 
version of kriging are presented in Table 2. As illustrated 
in Table 2, UK was the best version in 1988 and SK was 
selected as the best version in 2019.

In optimizing diffusion interpolation, the optimization 
of two parameters should be considered. The parameters 
are the number of iterations in the solution of the heat 
equation and bandwidth. The implementation of this 
method needs more time than IDW because time is heavily 
dependent on the number of iterations in the heat equation 
solution. Hence, first, bandwidth was optimized while the 
iteration number was 100. Secondly, the iteration number 
was optimized. Optimizing iteration numbers was not 
like optimizing the power of IDW; there is an oscillation 
between good and bad results. Table 2 shows the results of 
optimization of diffusion interpolation for 1988 and 2019.

The most crucial optimizing parameter in the GPI 
method is the polynomial order. The results of optimizing 
this parameter are also presented in Table 2. Order 1 for 
GPI yielded the best results for both selected years (1988 
and 2019).

LPI has two critical parameters that should be optimized: 
the kernel function and the polynomial order. The order of 
polynomials was optimized as presented in Table 2. The 
best orders were 1 and 3 for 1988 and 2019, respectively. 
Kernel function was optimized for both of the selected 
years. In 1988, the constant kernel function was the best, 
but in 2019, the exponential kernel function yielded the 
best results.

As discussed, the validation result for groundwater 
cations in 1988 and 2019 was summarized in Table 2. 
This table consists of all the used methods, the best-fitted 
parameters for the methods, and finally, RMSE and MAE 
for each year. As it was previously mentioned, the best-
fitted IDW had the power of 1, maximum neighbor of 19, 
and sector type of 4-4D for the year 1988. 

For the DK, the bandwidth was 11 000, with the iteration 
number of 250 in the heat equation solution. Additionally, 
GPI with the order of 1 yielded the best result comparing 
the polynomial orders. Meanwhile, LPI with the order of 
1 and constant kernel function was the best choice among 
different kinds of LPI, and the best-fitted RBF was IMQ 
with max neighbor of 15 and sector type of 4-4D. The 
best choices were the UK with log transformation with 
constant order of trend removal and a polynomial with 
kernel function with maximum neighbors of 5 and sector 
type of 4. 

In 2019, the best-fitted IDW had power 1, and the 
maximum neighbors were 7; the sector type was 1. The 
best-fitted DK bandwidth was 4000. The iteration number 
was 150 in the solution of the heat equation. Additionally, 
GPI with the order of 1 yielded the best result compared to 
other polynomial orders. Meanwhile, LPI with the order of 
1 and constant kernel function was the best choice among 
LPI kinds. The best-fitted RBF was IMQ with a maximum 
neighbor of 15 and sector type of 4-4D. Moreover, the 
UK with log transformation with constant order of trend 
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removal was the optimum. Polynomial kernel function 
with maximum neighbor of 5 and sector type of 4 was the 
best choice.

As Fig. 3 shows, the UK technique with the optimized 
parameters showed a better correlation between the 
simulated and measured amounts in 1988. As Fig. 4 
shows, the results from the GPI method with optimized 
parameters had a better correlation with the measured 
amounts of cations in 2019.

Considering Tables 2 and 3, in 1988, the UK method 
with the optimized parameters had both the least 
prediction error and the highest correlation with the 
measured amounts. Therefore, it is the best interpolation 
method for investigating spatial variations of cations in 
groundwater. As for the year 2019, the GPI method is the 
best interpolation method.

Fig. 5 shows the spatial changes in the concentration of 
cations in Esfarayen plain in the year 1988 with the UK. 
Fig. 5 indicates that the highest cation concentration was 
observed in the southwest of the plain, decreasing toward 
the north in 1988.

Fig. 6 shows the spatial variation of cation concentration 
in Esfarayen plain in 2019. Fig. 6 indicates that the highest 
concentration of cations was observed in the southwest of 
the plain in 2019, decreasing toward the northeast. 

Fig. 7 presents the trend of the variation of cation 
concentration from the year 1988 to the year 2019. As 
Fig. 7 shows, the highest increase in the amount of cations 
was observed in the northwest, and the highest decrease 
in the amount of cations was found in the southeast from 
1988 to 2019.

The results showed that the highest increase in the 
concentration of total cations has occurred in the northwest 
of the plain, primarily due to alluvial evaporation deposits 
that lead to an increment in the concentrations of Cl, 
Mg, and K. Moreover, considerable consumption of 
fertilizers containing Na, Ca, Mg, and K in the northwest 
of the plain for agricultural purposes is another reason 
for increasing the concentration of total cations in the 
northwest of the plain. Further, in a small part in the 
east of the plain, the concentration of cations decreased, 
mostly due to freshening in the aquifer due to rainfall and 
fresh ground discharge as well as  ion adsorption during 
ion exchange. It was noted in similar studies that changes 
in the concentration of cations in the groundwater are 
mainly attributed to alluvial evaporation, extensive use 
of fertilizers, and ground discharge (38-40). The final 
maps of spatial changes of cations in the selected years 
are presented in Figs. 5 and 6. The optimization results 
showed that for 1988, the optimal interpolation method 

Table 2. The Summary of Validation Results for Cations in the Years 1988 and 2019

Interpolation 
Methods

Optimized Parameters RMSE MAE

1988 2019 1988 2019 1988 2019

IDW

Power 1 1

20.45 19.74 5.7 -7.71Max neighbors 19 7

Sectors 4-4D 1

Diffusion equation
Bandwidth 11000 4000

17.19 21.22 26.4 -8.89
Iteration 250 150

Global polynomial Order of polynomial 1 1 18.49 17.42 2.71 -11.05

Local polynomial
Order of polynomial 1 3

18.75 20.57 4.51 -9
Kernel function constant Exponential

RBF

Method
Inverse multiquadric 

function
Inverse multiquadric 

function
19.81 20.67 5.52 -8.98

Max neighbors 15 7

Sector 4-4D 4-4D

Kriging

method UK SK

16.39 19.28 -0.497 -10.68

Transformation Log Log

Trend removal constant First

Kernel function Polynomial Exponential

Max neighbors 5 5

Sector 4 1

Abbreviations: IDW, inverse distance weighting; RBF, radial basis function; MAE, mean absolute error; RMSE, root mean square error.
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was UK (27), and for 2019, the optimal interpolation 
method was GPI (27). According to both maps, most 
of cation’s gloom occurred in the southwest of the plain 
and decreased to the northeast. The difference is that the 
maximum concentration in 2019 was lower than in 1988, 
which can be clearly seen in Fig. 7. The highest decrease 
in cation concentration was observed during the study 
period in the southeastern regions of the plain. In general, 
groundwater quality change is a complex problem (not 
a complicated one) occurring in many areas. One of the 
main reasons for this is the small changes in groundwater 

levels, and researchers and decision-makers must control 
the dimensions of this growing phenomenon by adopting 
appropriate policies and strategies (41, 42). 

GIS-based interpolation methods have widely been 
used in scientific research (43-46). For instance, Hazbavi 
and Gherachorlo (27) examined the performance of RBF, 
IDW, and Kriging-based interpolation methods for spatial 
and temporal groundwater level changes in Meshgin 
plain. They found that the RBF method with the lowest 
error is the optimum method for preparing the spatio-
temporal map. Furthermore, Leulmi et al (47) evaluated 

Fig. 5. The Spatial Changes in the concentration of Cations in Esfarayen Plain in the Year 1988.

Fig. 6. The Spatial Changes in the concentration of Cations in Esfarayen Plain in the Year 2019.

Fig. 7. The Trend of the Variation of Cation Concentration from the Year 1988 to the Year 2019.
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the Spatio-temporal variation of nitrate (during 2006-
2016) in groundwater in the Eastern Mitidja plain in 
Algeria. They used a geostatistical approach for drawing 
kriging maps for the nitrate level in the Mitidja plain. 
They asserted that nitrate fluctuation in the Mitidja plain 
was higher than WHO standards (higher than 50 mg/L). 
They explained these changes by anthropogenic factors 
and piezometric level changes. Similarly, Meng et al (37) 
compared the interpolation performance of seven GIS 
interpolation methods and cited that regression kriging 
can significantly improve spatial prediction accuracy even 
when using a weakly correlated auxiliary variable. Further, 
Adhikary and Dash (31) compared the performance of 
deterministic (IDW and RBF) and stochastic (UK and OK) 
methods to predict the spatial variation of groundwater 
depth in India. Their analysis revealed that the UK has 
the best performance in predicting the spatial variation of 
groundwater depth in India.

4. Conclusion
This study assessed spatio-temporal variation of the cations 
in the groundwater of the Esfarayen plain, employing 
various interpolation methods in GIS. In 1988, UK with 
optimum parameters showed the best performance. The 
map of spatial variations created using the UK method 
indicates that the concentration of cations this year varies 
from about 8 mg/L (southwest) to 80 mg/L (northwest). 
Moreover,  in 2019,  the spatial variation of the cations 
that GPI prepared with the optimum parameters had the 
best performance (R2 = 0.71), indicating that the cation 
concentration changed from approximately 13 mg/L in 
the northeast to 64 mg/L in the southwest of the plain. 
The results from the temporal variation map of the 
cation concentration imply that the concentration of the 
cations increased about 23 mg/L, which was the highest 
increment, in the northeast of the plain, and decreased to 
about 37 mg/L, which was the highest decrement, in the 
southeast of the plain, from 1988 to 2019. The results of 
this study indicate that GIS-based interpolation methods 
could model the concentration of cations in groundwater. 
It is recommended that the performance of methods such 
as fuzzy and artificial neural network should be evaluated 
for this modeling.
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