
1. Introduction 
Soil salinization is a worldwide emerging problem, 
particularly in arid and semi-arid areas. It occurs when the 
soil contains an excessive amount of soluble salts, such as 
sodium (Na + ), chloride (Cl-), potassium (K + ), and sulfate 
(SO4

2-), with an electrical conductivity (EC) exceeding 4.0 
dS/m (1). Soil salinization has adverse effects on plant 
growth, health, and crop production by reducing water 
uptake, altering nutrient availability, and disrupting soil 
aggregate stability (2). It occurs naturally through seawater 
intrusion or the release of salts from bedrock (3). However, 
human activities, such as using saline irrigation water and 
excessive application of fertilizers in semi-arid croplands, 
can also cause it. The phenomenon is exacerbated by 
climate change, leading to increased temperatures due 
to global warming and a lack of precipitation, causing a 
considerable rise in evapotranspiration rates and leading 
to salt accumulation and an increase in soil salinization 
(4). Almost 800 million hectares of land are affected by 
salinity, accounting for 6% of the total area of the planet. 
Of these lands, 63% are in Africa (5). Every year, salinity 

increases at a rate of 0.3 to 1.5 million hectares of farmland, 
leading to a reduction in crop production of over 20% (6). 
Experts predict that half of the world’s arable land will be 
affected by salinity by 2050 (1).

Assessing the response and adaptation of soil 
microbiomes to salinity stress has become increasingly 
important, as they are critical drivers of plant productivity, 
nutrient cycling, organic matter decomposition, and 
overall soil health. There are various approaches and 
technologies available to manage salinity stress. For 
instance, developing salt-tolerant cultivars and using 
chemical products such as gypsum, sulfuric acid, and 
calcium chloride can help leach salts from the soil (7). The 
use of plant growth-promoting microorganisms may also 
help reduce the negative impacts of salinity (8). However, 
these methods are often expensive, require advanced 
technology and good-quality water, and are not always 
affordable in developing countries. Therefore, low-cost 
and practical management tools should be developed 
to mitigate salinity stress. One promising approach is 
applying organic amendments (9). Their use can enhance 
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soil aggregate stability and promote microbial growth and 
diversity, leading to improved aggregate formation and 
organic carbon stabilization, which can help plants resist 
salinity (10).

The relationship between salinity, soil microbiome, 
and organic amendments has stimulated growing 
interest in sustainable soil management practices such as 
vermicomposting, which involves the use of earthworms to 
convert various organic wastes into organic amendments. 
Studies have proven that vermicompost benefits plant 
growth, promotes soil health, and reduces plant diseases 
(11). 

Several studies have shown that vermicompost can 
reduce the negative impacts of salinity on plants and 
soil (3, 12-14). The unique qualities of vermicompost, 
including its increased nutrient levels and the enriching 
effect of earthworm gut passage on microbial communities 
(13), suggest heightened potential for addressing salinity-
induced challenges. Despite the evident significance, 
the current literature reveals a notable gap in studies 
specifically investigating the influence of vermicompost on 
soil microbiome and its role in alleviating soil salinization. 
Therefore, a comprehensive review should be conducted 
to synthesize existing evidence, identify key research gaps, 
and pave the way for future investigations. 

This review aims to consolidate relevant information on 
the capacity of vermicompost to alleviate salinity stress on 
the soil microbial community, knowing its mechanisms of 
action and efficiency. The first section of the review will be 
dedicated to understanding the damage caused by salinity 
to the soil microbial community. In the second section, we 
will identify the vermicompost characteristics and what 
makes it different from other organic amendments while 
indicating its impact on soil health. The third section will 
shed light on using vermicompost to overcome the effects 
of salinity on the microbial community of soil, trying to 
understand the mechanisms, the efficiency, and the limits 
of its application.

2. Data Collection 
The papers for this review were collected by searching 
multiple databases, such as Scopus, Web of Science, and 
PubMed. Articles published in peer-reviewed journals 
were selected. The search strategy involved using the 
following keywords: soil salinization, vermicompost, and 
soil microbiome. A total of 100 articles met the inclusion 
criteria and were considered for analysis. The primary 
focus was on studies published from 2009 to 2023. Then, 
the papers were analyzed to choose the most relevant 
ones, reducing the number of papers considered for the 
review to 70. During our literature search on the effects 
of salinity on the soil microbiome, we observed a notable 
scarcity of research papers. This scarcity became even 
more pronounced when narrowing our focus on studies 
specifically addressing the impact of vermicompost on the 
soil microbiome.

3. The Effects of Salinity on Soil Microbiome 
Soil salinity exerts osmotic stress and ion toxicity on 
the soil microbiome, reducing microbial biomass and 
activity and significantly shifting microbiome diversity 
and composition. This ultimately affects plant growth and 
crop yield by altering soil functions regulated by the soil 
microbiome. 

Soil salinity can influence the soil microbiome negatively, 
reducing microbial biomass and activity, exerting a strong 
selective pressure on the microbial community, and 
leading to changes in microbial structure and diversity 
(15). The accumulation of solutes (Na + , Cl-, and HCO3

-

) enhances the risk of ion toxicity and osmotic pressure, 
causing the plasmolysis of cells, thus leading to the death 
of microorganisms and roots (15). Consequently, soil 
microbial activity and biomass decrease considerably 
in salinity conditions (16). The salinity stress can also 
negatively affect enzyme activity (17, 18). 

Salinity can affect the microbial community both directly 
and indirectly (Fig. 1). Direct effects are osmotic stress and 
ion toxicity, while indirect effects include changes in soil 
organic matter inputs, soil structure, nutrient availability, 
and aggregate stability. Salinity reduces plant growth, 
limiting carbon inputs, which decreases microbial activity 
and biomass (19). It can also induce the destruction of soil 
aggregation by causing the dispersion and detachment of 
soil particles from aggregates. Salinity-induced destruction 
of soil aggregation can harm microbial activity and 
diversity in soil as the soil aggregation provides a varied 
microhabitat for soil microbiota with different organic 
matter stabilization, oxygen fluxes, and water potential 
(20). Zhang et al (21) investigated the effect of salinity on 
soil health. The findings revealed an inverse correlation 
between the level of salinity and organic matter in the 
soil, mainly because of a decrease in organic matter inputs 
and an increase in the rate of decomposition and erosion 
(22). Another issue caused by soil salinity is the decrease 
in nutrient availability. In saline soils, the uptake and 
reduction of different forms of N are low, and the N2-
fixation in modulating plants is also disturbed. As for the 
P, the high level of Na + and the increase in soil pH lowers 
the P solubility. The same goes for the K + uptake, which is 
inhibited in saline soil since the Na + competes with K + and 
interferes with its dependent process (23). 

Salinity causes a shift in the microbial community by 
increasing the abundance of halophilic and halotolerant 
microbes and reducing the abundance of salt-sensitive 
microbes. At the phylum level, the relative abundance of 
Firmicutes, Bacteroidetes, and proteobacteria rises with 
elevated salinity, whereas the presence of Acidobacteria 
decreases. At the species level, Salinisphaerales, 
Xanthomonadales, and Syntrophobacterales were enriched 
in saline soils, while Nitrosomonadales, a salinity-sensitive 
species, decreased in saline conditions (19). The phyla 
Firmicutes was abundant in saline soils, probably because 
this phylum includes many halophilic and halotolerant 
species and other species capable of endospore synthesis. 
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This property will allow them to survive in extreme 
environments and to increase their abundance after the 
death of other bacteria because of salinity exposure (24). 

The mechanism of the impact of salinity on the fungal/
bacterial ratio of the soil is complex. Studies have shown 
the dominance of fungi over bacteria in both saline (25) 
and non-saline soils (26) following exposure to salt stress. 
However, bacterial dominance over fungi has also been 
reported in soil affected by salinity (27). This indicates that 
the microbial response to salinity is complex and depends 
on various factors, including the soil legacy, which may 
favor bacterial dominance due to the presence of halophilic 
bacteria (25). Furthermore, it is worth noting that fungi 
have chitinous cell walls that enable them to resist osmotic 
pressure, which may explain their dominance in certain 
cases (24).

Salinity can change the abundance and structure of soil 
microbiome, consequently influencing their functions in 
soil. Zhang et al (21) evaluated the impact of salinity on 
soil health and microbial community composition. The 
study revealed that salinity affected bacterial communities 
by decreasing the abundance of Planctomyces and 
Archangium, two genera involved in the carbon cycle. 
The salinity also influenced the soil fungal community. 
For instance, the abundance of Hydropisphaera, 
efficient in lignin degradation, increased under salinity 
conditions. The effect of salinity also extended to the 
arbuscular mycorrhizal fungus Glomus which is involved 
in phosphorus and potassium uptakes of plants; in other 
words, its abundance decreased in saline conditions. The 
change that occurs in microbial diversity and community 
composition affects microbial function. A study conducted 
by Li et al (28) indicates that high salinity disturbs microbial 

diversity and impacts the abundance and structure of the 
nitrogen cycling bacterial communities, leading to the 
inhibition of nitrification-denitrification ammonification 
and nitrogen fixation processes. 

Overall, salinity affects soil health and shifts microbial 
community, generating a poor soil structure, lower organic 
matter, and nutrient deficiencies. This will influence plant 
growth by restricting water infiltration and uptake, root 
penetration, and seedling emergence, resulting in yield 
loss (16).

4. The Use of Vermicompost to Improve Soil 
Characteristics 
4.1. Vermicompost Characterization 
Vermicompost, a product of the combined action of 
earthworms and microorganisms, is a stable product (29) 
characterized by high macro and micronutrient content 
(Table 1), high porosity and water holding capacity (30), 
higher microbial population, diversity, and enzymatic 
activity (30, 31). 

A study by Zhou et al (32) revealed that vermicomposting 
enhanced the NPK content of pig manure vermicompost, 
resulting in a more stable product with a lower C/N 
ratio and higher TOC than compost. Additionally, 
vermicompost had a higher microbial population and 
enzymatic activity compared to compost. Similar findings 
were confirmed by another study conducted by Cai et 
al (33), which compared green waste composting and 
vermicomposting and revealed that vermicomposting 
produced a higher quality product with a higher level 
of N and P. Earthworms enhance the accessibility of 
organic matter to the soil microbiome by fragmenting 
organic matter and increasing surface area. As a result, 

Fig. 1. The Impact of Salinity on Soil Microbiome
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decomposition occurs faster, leading to lower carbon-to-
nitrogen ratios and stable products. Similarly, the bacterial 
diversity and richness were higher in the vermicompost 
(33). Furthermore, Huang et al (34) confirmed that the 
vermicompost of sewage sludge represented higher 
operational taxonomic units and bacterial diversity when 
compared to the compost. 

Vermicompost is distinguished by a diverse microbial 
community. This community comprises phosphate 
solubilizers, plant growth-promoting bacteria, and 
free-living nitrogen-fixing organisms (34). During 
the vermicomposting of scotch broom, the microbial 
community showed increased taxonomic and phylogenetic 
bacterial diversity. Notably, a boost in functional diversity 
was observed through augmented nitrification, metabolic 
capacity, and the production of salicylic acid and 
streptomycin, known for their ability to promote plant 
resistance. Furthermore, this vermicompost contains the 
genus Devosia, known to aid in the fixation of nitrogen 
and release plant growth-promoting substances and 
antibiotics, and a variety of microorganisms that can 
produce plant cell-degrading enzymes, including members 
of the Chlorobi phylum, the Cellulomonodaceae family, 
and the Achromobacter genus (30). Huang et al (34) stated 
that the vermicompost of vegetable waste enhanced the 
bacterial and fungal diversity, while also promoting the 
growth of beneficial bacterial species such as Streptomyces 
spp. and fungal species like Paecilomyces spp., Dactylaria 
biseptata, and Trichoderma spp. 
5. Effects of Vermicompost on Soil Composition 
Vermicompost application improves soil structure by 
enhancing the flocculation of clay minerals, leading 
to better soil aggregation. This results in reduced bulk 

density, increased soil aggregate stability, and improved 
porosity and aeration (35). Studies have demonstrated 
that vermicompost significantly enhances the total organic 
carbon content of the soil, making it a valuable source of 
stable organic matter. It improves physical, chemical, and 
biological properties by promoting soil organic matter. 
Applying vermicompost in crop rotations has been found 
to increase total organic carbon, particulate organic carbon, 
microbial biomass carbon, carbon mineralization rate, 
and recalcitrant carbon (36). Additionally, vermicompost 
enhances carbon storage and sequestration (37, 38).

Moreover, vermicompost acts as a potent soil additive, 
enhancing nutrient status. Various studies confirm that 
adding vermicompost to soil increases nutrient content 
and availability, particularly NPK (39-44). Its longer 
nutrient retention time makes it an excellent source of 
nutrients for the soil (44). In lateritic soils, known for 
acidity, low organic matter, and high iron and aluminum 
oxides, vermicompost improves nutrient availability, 
enhances mineralizable N, and increases phosphorus 
solubility. This is crucial for overcoming nutrient 
disorders, especially the unavailability of phosphorus in 
lateritic soils (40, 45).

Vermicompost positively influences microbial activity, 
biomass, and diversity. It increases the abundance of 
bacteria and Actinomycetes while decreasing fungi, 
restoring soil health by improving the bacterial/fungal 
ratio. Vermicompost also enhances enzymatic activity, 
including catalase and polyphenol oxidase activities (46). 
However, the impact on the microbial community can 
vary depending on soil characteristics, inheritance, and 
crop type (47–49).

The application of vermicompost extract induces 

Table 1. The Physico-chemical Characteristics of the Vermicompost 

Source of 
vermicompost

Total C
(g/kg)

Total N
(g/kg)

P
(mg/kg)

K
(mg/kg)

Ca
(mg/kg)

Mg
(mg/kg)

Fe
(mg/kg)

Mn
(mg/kg)

pH EC (dS/m) Ref.

Grape marc 
from Albariño 
variety

154 ± 22.20 5.50 ± 0.97 751 ± 94 4364 ± 443 1236 ± 163 396 ± 72 44.40 ± 9.67
16.10 
±3.87

8.50 ± 0.13 0.35 ± 0.05 (24)

Grape marc 
from Mencía 
variety

233 ± 14.50 8.93 ± 0.93 1418 ± 253 6466 ± 1708 2155 ± 244 673 ± 158 224 ± 61.30
49.20  

±14.40
7.55 ± 0.10 0.22 ± 0.05 (24)

Scotch broom 471.44 ±0.45 36.42 ± 0.22 3070 ± 30 5990 ± 140 8990 ± 180 2900 ± 50 1890 ± 20 640 ± 10 6.60 ± 0.02 0.20 ± 00 (25)

Ageratum 
conyzoides + 
cow dung (1:1)

- 30.26 ± 1.40 - 100350 +4510 87.67 ± 2.01 - - - 7.32 ± 0.04 2.50 ± 0.02 (16)

Green waste - - - - - - - - 7.70 ± 0.00 1.90 ± 0.00 (18)

Sewage 
sludge + cattle 
dung (2:3)

- - - - - - - - 5.90 ± 0.20 2.25 ± 0.05 (19)

Vegetable 
wastes

- 16.60 ± 0.50 - 1800 ± 100 - - - - 7.50 ± 0.02 - (20)

Food waste + 
cow dung

- 15.60 ± 0.30 - 1500 ± 100 - - - - 7.60 ± 0.01 - (20)

Crop residue 
+ garden waste

232 ± 0.00 13 ± 0.00 8900 ± 0.00 - - - - - 6.20 ± 0.00 - (26)

Water hyacinth 
and paddy 
straw

- 14.10 9300 11200 - - - - - - (27)

Cow manure 59.42 ± 0.00 7.68 ± 0.00 19090 ± 0.00 4130 ± 0.00 25100 ± 0.00 2920 ± 0.00 - - 6.52 ± 0.00 2.19 ± 0.00 (21)
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a significant shift in microbial communities in the 
rhizosphere, either through direct colonization, biotic 
effects, or indirectly through the secretion of secondary 
metabolites and nutrients (49). According to Wu et al 
(50), vermicompost can enhance the diversity of bacterial 
and fungal communities in soil. It also shifts the microbial 
structure of soil by favoring the presence of Acidobacteria, 
Actinomycetes, Aspergillus, and Ascomycetes.

6. Use of Vermicompost in Moderating Salinity Effects 
on Soil Microbiome 
Additionally, Liu et al (51) found that using vermicompost 
effectively mitigated the negative impacts of salinity 
on soil microbiome. This is achieved by enhancing the 
organic matter content and increasing aggregate stability, 
resulting in a notable shift in the bacterial community. 
The introduction of vermicompost resulted in a rise in 
the relative abundance of Skermanella and Sphingomonas. 
Additionally, using vermicompost amplified the presence 
of Arthrobacter, a plant growth-promoting rhizobacteria, 
and increased the abundance of Pedobacter. Both genera 
are recognized for their positive contributions to carbon, 
nitrogen, and potassium cycling. Their presence plays an 
important role in enhancing nutrient availability in saline 
soils, thereby aiding in mitigating salinity stress. 

7. Possible Drawbacks of Vermicompost Application 
There is no universally standardized approach for using 
vermicompost. The utilization of vermicompost typically 
depends on various factors, including the specific 
characteristics of the soil and the type of agricultural 
products being grown (52-54). Agricultural practices 
often consider factors such as soil type, nutrient content, 
pH, and EC levels (53). It is important to note that using 
vermicompost can lead to an increase in soil EC due to the 
presence of salts in the compost. This can be a concern for 
farmers, particularly in arid and semi-arid areas where soil 
salinity is already a threat to crop productivity (55). 

The salt level of vermicompost depends on the nature 
of the feedstocks and the extent of their decomposition. 
Therefore, it is difficult to establish a universal rule for 
all types of vermicompost. For instance, vermicompost 
made using 70% sewage sludge and 30% cow dung had an 
EC of 4.16 dS/m (56), whereas vermicompost made from 
Halimeda gracilis seaweed and cow dung had an EC of 
2.06 dS/m (57). Similarly, vermicompost made using 60% 
cow dung and 40% paper mill sludge had an EC of 5.77 
dS/m (58). 

The effect of vermicompost on soil salinity depends on 
the quantity applied and the EC of the soil. Demir (53) 
investigated the impact of vermicompost application on 
non-saline soil subjected to salinity stress. The study found 
that vermicompost increased soil EC values in low and 
medium Na salt levels (0 and 4 dS/m NaCl concentration), 
and this effect was correlated with the applied dose of 
vermicompost (0%, 2.5%, 5%). However, vermicompost 
reduced the EC values and the exchangeable sodium 

percentage under high salinity levels (8 dS/m NaCl 
concentration). On the other hand, the application of 
vermicompost to saline soils decreased the EC and ESP of 
the soil. A vermicompost made from crop residues (rice 
and maize) with an EC of 3.8 dS/m and an organic matter 
content of 42% was subjected to water stress in a study. 
The vermicompost was capable of reducing the EC of soil, 
exchangeable sodium percentage, and the sodium content, 
helping the soil recover from the combined effect of salinity 
and water deficit (59). Another study performed by Ding 
et al (60) indicated that the application of vermicompost 
with an EC of 3.2 dS/m to saline-sodic soil (EC = 7.3 dS/m, 
ESP = 24.5) reduced the EC and the ESP, thereby reducing 
soil salinity. Hence, assessing the EC of the soil before 
utilizing vermicompost is crucial. A soil with an initial EC 
below 4.0 dS/m may exhibit sensitivity to vermicompost 
application, while a saline soil with an EC exceeding 4.0 
dS/m can accommodate the use of vermicompost without 
adverse effects on its overall EC.

It is also essential to consider the applied amount of 
organic amendment. Reddy and Crohn (55) tested the 
impact of compost salinity on plant growth. Briefly, a 
greenhouse experiment was conducted using 9 different 
types of compost applied to 3 crops (lettuce, tomato, 
and blueberry). Additionally, two rates of compost were 
applied to induce salinity levels similar to those associated 
with 10% and 25% yield reduction. Results indicate that 
applying compost at a high rate can effectively increase 
soil salinity and decrease plant growth like any other 
source of soil salinity; however, if applied at a moderate 
rate, compost was able to increase the plant growth of all 
treated crops. 

The vermicompost application can improve the 
physico-chemical characteristics of the soil and help 
the soil mitigate the effect of salinity. These benefits can 
outweigh the cost of the added EC caused by vermicompost 
application, especially at low application rates (10-20 Mg/
ha) (55). Vermicompost can also be applied at the same 
rate or even a lower rate (5 Mg/ha) (45). 

8. Conclusion 
In conclusion, salinity exerts a significant and diverse 
impact on the soil microbiome, causing direct reductions 
in microbial biomass and activity while inducing shifts 
in community composition. The complex interplay of 
osmotic stress, ion toxicity, and alterations in microbial 
structure and diversity has cascading effects on essential 
soil functions. Salinity negatively influences enzyme 
activity, disrupts soil aggregation, and alters the ratio of 
fungi to bacteria.

A growing number of recent studies have confirmed 
the effects of vermicompost, an eco-friendly and low-
cost amendment, on the soil microbial community under 
salinity stress conditions. Vermicompost application 
enhanced microbial biomass and activity. Its effect can be 
explained either by direct colonization of vermicompost-
origin taxa or by its nutrients and organic matter content. 
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Although vermicompost application can improve salt-
affected soils, it is wise to consider the possibility of 
increasing soil EC after vermicompost application, using 
the recommended rates and taking into consideration the 
types of crops and their sensitivity to salinity. Additionally, 
the initial value of EC of both soil and vermicompost can 
guarantee the optimal use of vermicompost. 

Future research should delve deeper into this specific 
type of organic amendment, exploring its interactions 
with salinity and elucidating its nuanced effects on the soil 
microbial community. We recommend that subsequent 
studies should focus on various salty soils, utilizing 
vermicompost made from different feedstock materials 
and carefully assessing potential drawbacks to advance 
our understanding of sustainable soil management 
practices under salinity stress. Additionally, long-term 
studies are warranted to assess the sustained efficacy of 
vermicompost in different soil and climatic conditions.
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