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1. Introduction
Fluoxetine (N-methyl-c-[4-phenoxy]benzenepropanamine) 

is the first compound developed as a selective serotonin 
reuptake inhibitor (SSRI) and appears to be the most 
commonly approved antidepressant in the world (1). 
Pharmaceuticals and personal care products (PPCP) like 
fluoxetine are found in superficial waters and influence 
the wildlife that inhabit these waters (2). Fluoxetine is 
recommended for depression disorders in a daily dose of 20-
80 mg and the therapeutic plasma concentration of fluoxetine 
ranges from 50 to 500 µg/L (3,4). Commercial drugs are 
usable. The concentration of combination of two fluoxetine 
enantiomers (S- and R-fluoxetine), which are approximately 
equipotent in absorbing serotonin, and are in circulation 
right now, is higher than that of parent drugs, while they are 
different in drug activities. In fact, S-norfluoxetine is about 20 
times stronger than R-norfluoxetine as a serotonin inhibitor 
in-vitro and in-vivo (5).

Solid-phase microextraction (SPME) has been 
effectively applied in sampling and analysis of 
environmental samples, food, and pharmaceuticals. 

Simplicity, solvent free nature, and easy coupling 
feature with gas chromatography (GC) and HPLC 
(high performance liquid chromatography) are some 
advantages of this technique (5-7). 

Many commercial and laboratory-made SPME 
fibers have been developed for determination of the 
concentration of compounds in diverse presses; however, 
some disadvantages of the existing SPME fibers are: 
relatively low operating temperature, instability and 
swelling in organic solvents, easy to break, low extraction 
efficiency for polar compounds, and stripping off the 
coating (5). Progresses in SPME fibers as a highly efficient 
extraction procedure greatly depends on the discovery of 
new SPME fibers (5).

There are several procedures to fabricate the SPME 
fibers. For example, the dipping technique is applied 
for commercial production of SPME. It normally 
involves dipping a fiber in a solution containing organic 
solvent and materials to be deposited in the fiber. The 
commercially available SPME fibers are costly due to 
high costs of equipment (5). The performance of SPME 
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fibers improves simultaneous with the progresses in 
Nanomaterials (9,10). The carbon nanotubes (CNTs) 
with large surface areas, robust mechanical properties, 
and being chemically inert are the effective sorbent 
nanomaterials (11-16), which have been successfully used 
as the SPME fiber coating for the analysis of the organic 
compounds, such as phenols, polybrominated biphenyls, 
and organochlorine pesticides (17-19). Low thermal 
stability and swelling in the organic solvents occur due 
to lack of bonding between coating and substrate. In one 
study, the SPME fiber coated with single-walled carbon 
nanotubes (SWCNTs) was developed, which could 
successfully extract the organochlorine pesticides from 
wastewaters (19).

This study was conducted to fabricate and characterize 
SWCNTs/fused-silica fibers, based on the surface 
modification of both SWCNT materials and fused-silica 
fibers. Moreover, the efficiency of fabricated SWCNTs/
SPME fibers in adsorbing fluoxetine from hospital 
wastewater was evaluated.

2. Materials and Methods
2.1. Chemicals and Materials 

Chemicals including H2SO4, HCl, NaOH, methanol, 
Triton x-100, 3-aminopropyltriethoxysilane (APTES), 
and acetone were of analytical grade and purchased from 
Merck (Darmstadt, Germany). Fluoxetine hydrochloride 
98% was purchased from Sigma–Aldrich (St. Louis, 
USA). The stock solution (5000 µg/mL) of fluoxetine 
was prepared in HPLC-grade methanol and stored in 
the refrigerator at 4°C. Stock and working solutions of 
fluoxetine were prepared in methanol (1.0 mg/mL) and 
stored at −20°C, protected from light.

2.2. Apparatus
The spectrofluorometer used in this study was a Varian 

(CARY Eclipse, Australia) containing a photomultiplier 
tube (PMT) detector equipped with a xenon lamp, which 
was set at the wavelength of 190–800 nm. A fluorescent 
spectrum was recorded with the slit widths of 5 nm and 
at the excitation and emission wavelengths of 246 and 294 
nm, respectively. Solutions were stirred by a Heidolph 
MR3001 magnetic stirrer (Schwabach, Germany) 
and a magnetic stirring bar (8 mm × 1.5 mm). The 
microstructure of samples was investigated by scanning 
electron microscopy (SEM) (LEO, Model 1450VP, 
Germany). Fourier-transform infrared spectroscopy 
(FTIR) (Nexus 470, Thermo Nicolet, USA) was used to 
characterize the oxygen-containing functional groups 
in SWCNTs. A Metrohm 780 pH-meter (Herisau, 
Switzerland) equipped with a combined glass electrode 
was used to determine pH values during the experiment.

2.3. Environmental Sample Collection
The sanitary wastewater sample was collected from 

Sina hospital (Mashhad, Iran). This sample was filtered 

through a 0.45 µm filter and stored at 4°C.

2.4. Silanization of Fiber Surface
The silanization procedure of the fiber surface was 

described similar to the silanization of fused-silica 
capillary (10,20). The capillary tube was cleaned by a 
mixture of hydrogen peroxide and concentrated sulfuric 
acid (35:65 v/v) to remove the protective polyimide layer 
(21), and then this part was dipped in a 1.0 M NaOH 
solution and heated in a hot water bath (70°C) for 30 
minutes. Afterward, the fiber was placed in a dry tube 
and kept at 130°C for 30 minutes. Thereafter, it was 
rinsed with ultrapure water to achieve pH= 7, and then 
dried at room temperature. The hydroxylated part of the 
fiber was dipped in an APTES solution for 10 hours, at 
120°C. These 2 operations were repeated for 6 cycles to 
form a silanized layer on the fiber. Finally, it was rinsed 
with toluene and ethanol, and dried at room temperature.

2.5. Preparation of SPME Fiber Coated With SWCNTs
To prepare SPME fiber, 200 mg of SWCNTs were 

refluxed in 20 mL mixture of concentrated nitric acid 
and sulfuric acid (1:3, v/v) at 130◦C for 45 minutes. The 
mixture was washed with deionized water until pH =7 
and centrifuged and dried at 120°C for 4 hours. Then, 
30 mg of the acid treated SWCNTs were dispersed in 5 
mL of Triton x-100 with ultrasonication (300W, 40 kHz) 
and a suspension containing 2 mg/mL of SWCNTs was 
obtained (5). The fibers were immersed into SWCNT 
suspension for 24 hours and then dried at 120°C to remove 
the solvent. The SPME fibers coated with SWCNTs were 
oxidized by the mixture of H2SO4 and HNO3 (v/v, 3:1) 
to create COOH groups at the sidewall of the SWCNTs. 
The prepared SPME fiber was characterized by FTIR and 
SEM.

2.6. SPME Procedure 
Ten milliliters of aqueous sample were placed in a 15-

mL vial and stirred by a shaker. The ionic strength and 
pH of the sample were adjusted with 0.1 M HCL and 
0.1 mol/L NaOH. Extraction was performed at room 
temperature and with stirring rate of 1600 rpm. After 
extraction, 0.5 mL of acetonitrile was added to desorb 
the analyte from the fibers and then the fluorescence 
spectrum was recorded.

3. Results and Discussion
3.1. FTIR Spectrum of the SWCNT/SPME Fiber

To investigate the oxygen-containing functional groups 
on acid treated SWCNT sample, the FTIR spectrum 
of the sample was observed as shown in Fig. 1. The 
vibrational mode at ∼1500 cm−1 was corresponding to 
C=C bonds. Moreover, the peak at ∼1152 cm−1 resulted 
from C-O groups, and peak at ∼ 1726 cm−1 was assigned 
to carboxylic groups. The pretreated SWCNT presents 
absorption peaks at 1726 and 1500 cm−1, indicating 
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the SWCNT carboxylic and carboxylate groups (22). 
Additionally, the peak at 1152 cm−1 could be ascribed to 
the stretching vibrations of O–H and C–OH. 

According to the results of this study, acid treatment 
introduced oxygenated groups to the surface of CNTs, as 
confirmed in other studies (22,23).

Oxygen-containing functional groups on SWCNTs 
enhance the polarity of SWCNTs, and improve dispersion 
of SWCNTs in organic solvents such as DMF and Triton 
x-100. In addition, the acid-treated SWCNTs were 
negatively charged due to the occurrence of carboxylic 
groups (see Fig. 1). 

The SWCNTs tended to assemble into bundles, 
making them difficult to disperse in the solution, due 
to the strong Van der Waals attraction forces between 
nanotubes (24). Although SWCNTs possessed oxygen-
containing functional groups after acid treatment, more 
than 24 hours of ultrasonication was still required to 
obtain a stable SWCNT suspension in Triton x-100. The 
surface characteristic of the SWCNT-coated fiber was 
investigated by SEM. Figs. 2 and 3 show the coated fiber. 

3.2. Experimental Optimization for the SPME
Various parameters affecting the extraction efficiency 

of fluoxetine in aqueous sample, including extraction 
time, salt effect, desorption time, stirring rate, and pH 
were studied and subsequently optimized.

3.2.1. Effect of pH
It is well known that the pH of donor solutions plays 

an essential role in the extraction of basic drugs. Analytes 
should be in their neutral form, in order that they could be 
extractable by the organic solvent in the fiber. Fluoxetine 
is a basic molecule with pKa of 10.05. The extraction 
efficiency of the fluoxetine using solution with different 
pH values from 2 to 11 was studied. As shown in Fig. 4, 
fluorescence intensity increased with the increase of pH 
value within the range of 2-5 and then decreased up to 
pH=7 and ultimately increased as the pH value increased. 
Further intensity was attained at pH=11. The main 
interactions between the SWCNT fiber and fluoxetine 

were hydrophilic and hydrophobic interactions, and the 
ion exchange interaction probably had an insignificant 
role.

3.2.2. The Salt Effect 
The ionic strength of the samples in SPME procedure 

can strongly affect the efficiency of the extraction 
procedure. The extraction efficiency of fluoxetine was 
increased with the addition of salt into sample matrix, 
particularly to more polar analytes through salting-out 
effect. The interaction of the analyte with added ions can 
reduce the diffusion of the analyte into the extraction 
phase. An increase in matrix viscosity can hinder the 
analyte mobility and affect the extraction efficiency; so, 

Fig. 1. Fourier-Transform Infrared Spectroscopy (FTIR) of Acid 
Treated SWCNTs.

Fig. 2. Scanning Electron Microscopy Image of SWCNTs.

Fig. 3. Deposition of SWNCT on Silica Fiber

Fig. 4. The Effect of pH on the Fluorescence Intensity in the Presence 
of Fluoxetine. SPME conditions: Extraction time 20 min; desorption 
time 15 min; fluoxetine concentration 1 µg/L.
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salt effect was studied in a concentration range from 1% to 
5%. It was observed that the fluorescence intensity of the 
analyte increased as the salt was raised to a concentration 
of 3%, and then decreased as the salt effect increased 
further (as shown in Fig. 5). Therefore, a concentration of 
3% (w/v) was selected as the optimum salt concentration.

3.2.3. Effect of Stirring Rate
The magnetic stirring rate is most generally used in 

SPME experiments to enhance the extraction efficiency. 
It was shown that the intensity in fluorescent areas of 
the analyte increased as the stirring rate increased from 
0 to 1600 rpm. Increasing the stirring rate up to 1600 
rpm could result in massive air bubbles and decrease 
the pre-concentration factor (see Fig. 6); therefore, 1600 
rpm was set as the optimum stirring rate for subsequent 
experiments.

3.2.4. Effect of Extraction Time
The extraction time is a significant factor in an SPME 

technique; it influences the partition of the analytes 
between sample solution and fiber coating. In this regard, 
extraction was done within 5- 55 minutes in order to 
assess the effect of extraction time on the extraction 
efficiency of fluoxetine. Four different extraction periods 
were tested (results presented in Fig. 7). Mass transfer 
is a process of diffusion through the pores in SWCNT; 
therefore, the porosity of SWCNT layer on the SPME 

fiber can intensely affect the extraction dynamics. The 
extraction efficiency increased when the extraction time 
increased from 5 minutes to 20 minutes but did not reach 
the equilibrium, and then decreased as the extraction 
time increased further. Thus, 20 minutes was selected as 
the optimum extraction time considering the sensitivity 
and analysis speed.

According to the results obtained in this study, the 
maximum extraction efficiency of fluoxetine in aqueous 
solution was obtained using the fabricated SPME fiber 
under the following optimum conditions: extraction time, 
20 minutes; desorption time, 15 minutes; desorption pH 
=11: and stirring rate, 1600 rpm. 

3.3. Figures of Merit
Figures of merit in this method including correlation 

coefficient (R), experimental limit of detection (LOD), 
and linear dynamic range (LDR) were investigated under 
the best conditions. The method was applied to analyze 
the spiked sanitary wastewater sample with the recovery 
of 96.7%. The results are displayed in Table 1.

3.4. Sample Analysis
The established SPME–fluorescence method was 

used to determine the fluoxetine content in sanitary 
wastewater. Fig. 8 illustrates the chromatograms of the 
fluoxetine based on the SMPE method.

In order to investigate the performance of the 
established method, SWCNT fiber was applied to extract 
sanitary wastewater sample spiked at 5 µg/L. The recovery 
and precision is listed in Table 2. The relative recovery 
(RR) and RSD were 96.7% and 0.32%, respectively. The 
results showed that SWCNT fiber could be applied in the 
analysis of fluoxetine in hospital wastewater matrix.
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Fig. 5. The Effect of Salt on the Fluorescence Intensity in the 
Presence of Fluoxetine. SPME conditions: Extraction time 20 min; 
desorption time 15 min; fluoxetine concentration 1µg/L; pH=11.

Fig. 7. The Effect of Extraction Time on the Fluorescence Intensity in 
the Presence of Fluoxetine. SPME conditions: Desorption time 15 
min; fluoxetine concentration 1 µg/L; pH=11; salt concentration 
3% NaCl; stirring rate 1600 rpm.

Fig. 6. The Effect of Stirring Rate on the Fluorescence Intensity 
in the Presence of Fluoxetine. SPME conditions: Extraction time 
20 min; desorption time 15 min; fluoxetine concentration 1µg/L; 
pH=11; salt concentration 3% NaCl.
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Table 1. Figures of Merit in the Proposed Method for the 
Determination of Established SPME for the Extraction of Fluoxetine 
From Aqueous Solution

Sample LDR (ppm) R2 LOD (ppm) RSD (%)

Fluoxetine 0.0001-0.03 0.985 ~0.0001 0.42
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4. Conclusions
In the present study, SWCNTs were treated with 
concentrated nitric acid to prepare fiber surfaces 
which could improve their capability in adsorbing the 
ions from solution. In the pre-concentration method, 
the use of SWCNT as a sorbent material for SMPE/
spectrofluorescence was evaluated and demonstrated to 
be favorable for routine determination of trace/ultra-trace 
compounds. The adsorption behavior of the analytes on 
SWCNTs was investigated systematically.

The analytes remained on SWCNTs could be easily 
desorbed and no carryover was observed in the next 
analysis. It is expected that SWCNTs have great potential as 
an adsorbent in the pre-concentration and determination 
of trace/ultra-trace compounds in various samples.
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