
© 2019 The Author(s); Published by Hamadan University of Medical Sciences. This is an open access article distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited.

doi 10.34172/ajehe.2019.08

The Relevance of Isotherm and Kinetic Models to 
Chlorophenols Adsorption: A Review 

Zaharaddeen N. Garba1*

1Department of Chemistry, Ahmadu Bello University Zaria, Nigeria

Avicenna J Environ Health Eng. 2019 June;6(1):55-65                                               http://ajehe.umsha.ac.ir

Review Article

1. Introduction
The importance of water to life cannot be 

overemphasized since it serves many other purposes 
apart from drinking and agriculture (1). A larger fraction 
of the earth is covered with water. Despite its abundant on 
the surface of the earth, the World Health Organization 
(WHO) only recommended a small portion of the 
fraction to be appropriate for drinking purposes. Even by 
considering the WHO recommendation, the majority of 
the populace in developing countries are known for the 
inadequate supply of hygienic drinking water (2). Natural 
and artificial activities are among numerous factors that 
contribute to water pollution which is among the most 
troubling environmental challenges bedevilling several 
countries. Water pollution occurs when substances that 
negatively affect living species contaminate the oceans, 
rivers, lakes, bays, and streams (3). 

Chlorophenols (CPs) that are covalently bonded to one, 
two, three, four and/or five chlorine atoms are named as 
monochlorophenols, dichlorophenols, trichlorophenols, 
tetrachlophenols, and/or pentachlorophenols, respectively 
(4). They are also known as important pollutants, 
which are widely found in industrial wastewaters and 
characterized by low biodegradability, strong odour, 
persistency in the environment, along with carcinogenic 
and toxic features affecting human and its environment. 

Exposure to CPs affects human nervous and respiratory 
systems and makes them hazardous to health (5-8). Table 
1 lists some properties of selected CPs. 

The recalcitrant nature of CPs makes them discharge 
into water bodies as a significant source of pollution. 
Basically, the accurate data are yet to be known, showing 
the exact amount of CPs discharged into the environment 
from various processes. Some of the processes applied 
for treating wastewater contaminated with CPs 
include adsorption (9-17), catalytic wet oxidation (18), 
biodegradation (19), aerobic granular sludge technology 
(20), anaerobic processes (21), and electrochemical 
degradation (22). However, Das et al (24) believed that 
the effectiveness of these technologies in fixing water 
pollution is questionable with their major threats and 
drawbacks (Fig. 1).

A recently published review article by Garba et al (16) 
provided detailed information on CPs, their sources 
into the environment, classification, and toxicity, and 
various wastewater treatment methods for their removal. 
In addition, they described the characteristics of CP 
adsorption by various adsorbents while not including 
isotherm and kinetic models. Thus, the objective of 
this work was to show the relevance of isotherm and 
kinetic models in studying CP adsorption onto various 
adsorbents. 

Abstract
The derivatives of phenols are among the most widely used chemicals in day-to-day life, which lead 
to water contamination by chlorophenols (CPs). These compounds belong to a class of those widely 
used chemicals that increase global concern about environmental protection due to their recalcitrant 
nature. Adsorption process has been employed for the removal of CPs from contaminated water 
out of many methods of wastewater treatment. This is due to its insensitivity to toxic substances, 
effectiveness, universal nature, fast kinetics, as well as the ease of operation and its simplicity in the 
design and applicability. Thus, this study compared the adsorption isotherm models such as linear 
and nonlinear and well discussed the fundamental characteristics, modelling, and mathematical 
derivations. Finally, the study highlighted and addressed the role of different isotherm models that 
were used in describing the adsorptive removal of CPs using various adsorbents.

Keywords: Chlorophenols, Adsorption, Isotherms, Linear, Nonlinear, Adsorbents

*Correspondence to
Zaharaddeen N. Garba, 
Email: dinigetso2000@gmail.
com

Published online June 29 
2019

Open Access
Scan to access more

free content

Received April 24, 2019; Revised June 2, 2019; Accepted June 10, 2019

https://doi.org/10.34172/ajehe.2019.08
http://ajehe.umsha.ac.ir
http://crossmark.crossref.org/dialog/?doi=10.34172/ajehe.2019.08&domain=pdf&date_stamp=2019-06-29


Garba et al

  Avicenna J Environ Health Eng,  Volume 6, Issue 1, 201956

Table 1. Selected Properties of Chlorophenolsa

Chlorophenols Structure MVb(cm3/mol) Cs (g/L) LogKow pKa

2-chlorophenol 99.8 2.40 2.220 8.50

4-chlorophenol 99.8 2.10 2.418 9.47

2,4-dichlorophenol 111.7 0.47 3.095 8.05

2,6-dichlorophenol 111.7 0.52 2.896 7.02

2,4,5-trichlorophenol 123.7 0.085 3.835 7.10

2,4,6-trichlorophenol 123.7 0.091 3.768 6.59

Abbreviation: MV, molar volume.
a Properties of chlorophenols were culled from (23) and obtained from SciFinder https://scifinder.cas.org. 

Fig. 1. Some Major Drawbacks Associated With Conventional Water Purification Systems.
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Table 2. Adsorption Isotherm Models (47)
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2. Adsorption Isotherm Models
Adsorption process is globally proven as the most 

efficient among various water treatment technologies 
(25,26) since it possesses very fast kinetics, can be easily 
handled, and is able to remove high amounts of pollutants 
(27-29). Establishing the most suitable adsorption system 
for equilibrium data is very crucial for exploring novel 
adsorbents for an adsorption process (30) which should be 
reliable in predicting the correlation between adsorption 
parameters and quantitatively comparing the behavior 
of adsorbents for systems (31,32). An equilibrium 
relationship, generally known as adsorption isotherms, 

is the most suitable system since it perfectly describes 
the interaction between pollutants and the adsorbent 
materials, thus becoming very vital in optimizing the 
mechanisms of adsorption processes, expressing the 
surface properties and the adsorbents capabilities, and 
designing the adsorption systems effectively (33,34).

Isotherms are used in studying and explaining the 
whole adsorption and desorption processes. Further, 
they are considered as functions that relate the adsorbate 
amount on the adsorbent with its concentration in 
case of liquid and its pressure if gaseous at a fixed 
temperature. Generally, adsorption isotherms comprise 

Table 3. Lists of Error Functions (47)

Error Function Definition Abbreviation Reference
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2
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Note. eq : The amount of adsorbate in the adsorbent at equilibrium (mg/g); o
aQ :  Maximum monolayer coverage capacity (mg/g); eC : Equilibrium 

concentration (mg/L); b: Langmuir isotherm constant (dm3/mg); n: Adsorption intensity; T: Temperature (K); FK :  Freundlich isotherm constant (mg/g); R: 
Universal gas constant (8.314 J/mol K); Tb : Temkin isotherm constant; TA : Temkin isotherm equilibrium binding constant (L/g); å : Dubinin-Radushkevich 
isotherm constant; sq : Theoretical isotherm saturation capacity (mg/g); β: Dubinin-Radushkevich isotherm constant (mol2/kJ2); oC :  Adsorbate initial 
concentration (mg/L); θ: The degree of surface coverage; nFH: Flory-Huggins isotherm model exponent; FHK : Flory-Huggins isotherm equilibrium constant 
(L/g); DK : Hill constant; nH : Hill isotherm maximum uptake saturation (mg/L); nH: Hill cooperativity coefficient of the binding interaction; RPK : Redlich-
Peterson isotherm constant (L/g); g: Redlich-Peterson isotherm exponent; SK : Slips isotherm model constant (L/g); Sâ : Sips isotherm model exponent; KT : 
Toth isotherm constant (mg/g); t: Toth isotherm constant’ A: Koble-Corrigan isotherm constant (Lnmg1-n/g); B: Koble-Corrigan isotherm constant (L/mg)n; åsw  
(kJ/mol) is effective adsorption potential; 

sV  (cm3/mol) is molar volume of adsorbates; a (cm3)b + 1/(kg·Jb)) and b are fitting parameters; 
sC  (mg/L) is the solubility 

of adsorbates; Kα : Khan isotherm model exponent; bK : Khan isotherm model constant; :RPα  Radke-Prausnitz isotherm model constant; Rr : Radke-
Prausnitz isotherm model constant; âR: Radke-Prausnitz isotherm model exponent.
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invaluable curves that depict how the phenomenon 
of a substance is governed. Such phenomena occur 
at a fixed pH and temperature where the retention 
or mobility of such substances moves from aqueous 
porous media/environments to a solid-phase (35,36). 
Adsorption equilibrium is the ratio of the amount of 
substance adsorbed with that remaining in the solution. 
This is confirmed when the time, in which an adsorbate 
containing phase is in contact with the adsorbent, is 
sufficient for the adsorbate concentration in the bulk 
solution to be in a dynamic balance with the interface 
concentration (37,38). A graphical representation of the 
solid-phase against its residual concentration usually 
depicts the mathematical correlation, which plays a key 
role in the modeling analysis, the direction of operational 
design, and the applicable practices of adsorption systems 
(39). A better perception of the adsorption mechanism is 
provided by the adsorbent degree of affinity, along with the 
underlying thermodynamic and their surface properties 
(40). Over the years, several researchers have reported 
various equilibrium isotherm models from three different 
approaches (41). The first reported approach was the 
kinetic consideration where adsorption equilibrium was 
assumed to be a state in which both rates of adsorption and 
desorption are equal (42). Thermodynamic consideration, 
where a basis for the derivation of various isotherm 
models was provided in multiple forms, is the reported 
second approach (43,44), The third approach was called 
a potential theory which normally conveys the main idea 
in generating the characteristic curves (45). However, 
isotherm derivation from more than one approach is 

the most fascinating trend in the modeling process, thus 
leading to the disparity in the physical interpretation of 
model parameters (46). Table 2 presents various isotherm 
models based on distinctive assumptions. The assumption 
with respect to the Langmuir isotherm is monolayer 
adsorption having a homogeneous surface with a 
definite number of adsorption sites. On the contrary, 
the Freundlich model is the most suited model for 
heterogeneous surfaces and can be applied to multilayer 
adsorption. In depicting the performance of adsorbents, 
Langmuir and Freundlich are the most frequently used 
models for that purpose. Tempkin isotherm assumed 
that a decrease in adsorption heat is linear. Furthermore, 
Dubinin-Radushkevich isotherm is commonly engaged 
in determining whether the adsorption mechanism is 
chemical or physical with a heterogeneous surface hosting 
free energy. Similarly, the spontaneous and feasibility 
nature of the adsorption process is regarded as the major 
assumption associated with Flory-Huggins isotherm. 
Another important assumption related to Hill isotherm 
is how the binding sites of a ligand in a macromolecule 
can influence other binding sites within the same 
macromolecule. All the aforementioned isotherms are 
categorized as two-parameter isotherms. The most 
popular and frequently used three-parameter isotherms 
are those in the Redlich-Peterson isotherm model. It 
combines the Langmuir and Freundlich models that can 
be used over a vast range of concentrations and in both 
heterogeneous and homogeneous systems. Other three-
parameter isotherms include Sips, Koble-Corrigan, Toth, 
Radke-Prausnitz, and Khan isotherm (47,60). 

Table 4. Adsorption Isotherm Models of Chlorophenols Onto Different Adsorbents

Adsorbate Adsorbent Isotherm model Reference

4-Chloroguaiacol Oil palm shell activated carbon Langmuir (78)

4-Chloroguaiacol Prosopis africana seed hull activated carbon Langmuir (68)

2,4,6-Richlorophenol Loosestrife activated carbon Temkin (79)

2,4,6-Trichlorophenol Cattail fibre-based activated carbon Freundlich (80)

2,4,6-Trichlorophenol Coconut husk-based activated carbon Langmuir (81)

2,4,6-Trichlorophenol Copper (II)-halloysite nanotubes Freundlich (82)

2,4,6-Trichlorophenol Activated carbon from coconut shell Freundlich (83)

2,4-Dichlorophenol Cattail fibre-based activated carbon Freundlich (80)

2,4-Dichlorophenol Organo clays Langmuir (84)

2,4-Dichlorophenol Prosopis africana seed hull activated carbon Langmuir (12)

2,4-Dichlorophenol Single-walled carbon nanotubes Langmuir (23)

2,4-Dichlorophenol Single-walled carbon nanotubes Polanyi-Manes (23)

2,6-Dichlorophenol Modified plantain peel Freundlich (85)

4-Chlorophenol Rattan sawdust based activated carbon Langmuir (86)

4-Chlorophenol Chemically modified chitosan Freundlich (87)

4-Chlorophenol Porous carbon from coconut spathe Langmuir (88)

4-Chlorophenol Nanosized activated carbon Freundlich (9)

4-Chlorophenol Carbon nanofibers Langmuir (13)

3-Chlorophenol Purified multiwalled carbon nanotubes Langmuir (89)

3-Chlorophenol Rice-straw-based carbon Langmuir (90)

2-Chlorophenol Single-walled carbon nanotubes Polanyi-Manes (23)
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3. Error Functions
During the analysis of adsorption experimental data, 

linear and non-linear isotherm models were used to 
elaborate on the suitability or best fitting of a model(s) to 
the process (61). This was aimed toward comparing the 
experimental data and the predicted isotherm owning 
to obtain a good understanding of the equilibrium state 
relationship between adsorbent and adsorbate. Due to 
linear regression models of popularity and simplicity, 
many researchers prefer to describe the nature of the 
adsorption isotherm model and select the optimum 
model of the process having the minimal error between 
the experimental data and the predicted isotherm (62-
64). However, in some studies, researchers emphasized 
that the use of nonlinear regression models in analyzing 
the adsorption equilibrium is more accurate in predicting 
the optimum isotherm for the process (31). Nonetheless, 
other researchers believed that both linear and nonlinear 
regression models are suitable for the selection of best-
fitted adsorption equilibrium isotherm depending on 
the manner of application and magnitude of error (61). 
Moreover, many error functions are employed in model 
selection in order to determine the nature of error which 
still relies on the definition of the intended function. This 
helps in ascertaining those assertions (64-67).

Rahim and Garba compared the validity of five different 
linear Langmuir isotherm models by incorporating χ2 
since R2 is no longer reliable when it comes to justifying the 
basis for selecting the most suitable model of adsorption 
because it only signifies the fit between the linear forms of 
isotherm equations and experimental data. Additionally, 
low χ2 values signify the best fit and describe the suitability 
between the predicted and experimental values of the 
adsorption capacity (68). 

In the present study, several mathematically rigorous 
error functions were applied in addition to the Chi-square, 
including hybrid fractional error function, the sum of 
squares errors, the sum of normalized errors, Spearman’s 
correlation coefficient, average relative error, the 
coefficient of non-determination, and the sum of absolute 
error Marquardt’s percent standard deviation (Table 3). 
This was done to drastically address and confront the 
inherent bias resulting from the transformation that leads 
toward a diverse form of parameter estimation errors and 
fits distortion (69). 

Recently, linear regression has been the most feasible 
tool among the other instruments for defining the best-
fitting relationships (71). In addition, it mathematically 
analyzes the adsorption systems, quantifies the adsorbates 
distribution (77), and verifies the consistency and 
theoretical assumptions of an isotherm model (70). 
During the development of computer technology in the 
1980s, the progression of nonlinear isotherm modeling 
was broadly facilitated and motivated to be in line with 
the developing technology (70). In contrast to the model 
linearization, nonlinear regression usually involves the 

maximization or minimization of error distribution 
between the experimental data and the predicted isotherm 
based on its convergence criteria (69).

4. Reported Isotherm Models for Chlorophenol 
Adsorption

The reported adsorption isotherms of some CPs onto 
different adsorbents are summarized in Table 4.

The functionalization of single-walled carbon nanotubes 
(SWCNTs) was reported by Ding et al (23), which was 
applied for CP adsorption from aqueous solution. They 
indicated that three models well fit the isotherms with the 
presence of grooves, an external surface, and interstitial 
channel adsorption sites in the closed-ended bundles of 
the SWCNT (91). The researchers further revealed that 
the SWCNT interstitial channels are extremely tiny for the 
adsorbate molecules to fit into, thus proposing the major 
adsorption sites to rely on grooves and external surface 
area (92). As a result, surface adsorption dominates the 
adsorption process. Considering that the Langmuir 
model and Polanyi-Manes models were both derived 
from surface adsorption (57, 93) and the Freundlich 
model was a special form of Polanyi-Manes model (94), 
it was reasonable that the adsorption data were well fitted 
to those three models.

 In another development, Ren et al (80) reported 
Freundlich as the most suitable isotherm model in 
describing the adsorption of 2,4-dichlorophenol and 
2,4,6-trichlorophenol onto cattail fibre-based activated 
carbon. Their revelation hinted at the uptake of both 
2,4-dichlorophenol and 2,4,6-trichlorophenos was 
multimolecular layer adsorption with interactions 
between the adsorbed molecules, and the surface of 
the cattail fibre-based activated carbon was relatively 
heterogeneous. Additionally, Garba and Rahim (12) 
studied the adsorptive removal of para-chlorophenol and 
2,4-dichlorophenol by employing the activated carbon 
from Prosopis africana seed hulls as the adsorbent. 
They carried out their experiments at three different 
temperatures by fitting the experimental data into 
Langmuir, Freundlich, and Temkin models and reported 
that the R2 of the three models was higher than 0.90 for 
all studied temperatures. However, the applicability of 
the Langmuir isotherm model became more pronounced 
compared to the other two isotherms when they applied 
the chi-square values. The fitness of the Langmuir model 
to the adsorption process connotes that the two CP 
molecules from bulk solution were adsorbed on specific 
monolayer which is homogeneous in nature.

As shown in Table 4, Langmuir and Freundlich were 
the most important isotherm models in fitting the CP 
adsorption data with the nature of the adsorbent, as well 
as the type of CPs playing a significant role in determining 
whether the process is monolayer or multilayer on a 
homogeneous or heterogeneous surface, respectively.
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5. Adsorption Kinetic Studies 
Elovich equation and Largergren pseudo-first and-

second order (1 & 2) models are the most popular and 
widely used models for kinetic study. This facilitates the 
understanding of the dynamics of an adsorption process.

5.1. Pseudo-first Order Model
The adsorption rate constant is ascertained from the 

pseudo-first order equation given by (95) as:

( ) 1
e t e

klog q q log q t
2.303

− = −                   (1) 

Where qe and qe are the amount of CPs adsorbed 
onto the adsorbents (mg g-1) at equilibrium and at time 
t, respectively, while k1 is the pseudo-first order rate 
constant (h−1).

5.2. Pseudo-second Order (1 & 2)
The pseudo-second order equation is expressed in two 

linear forms (95):

2
t 2 e e

t 1 1 t
q k q q

= +                                               (2)

 2
t 2 e e

1 1 1 1 
q k q t q

 
= + 
                                         (3) 

 where k2 (g mg-1 h-1) is the rate constant of the second-
order adsorption.

5.3. Elovich Kinetic Model
The primary proposed Elovich equation was to describe 

the kinetics of gases and chemisorptions on the solids. The 
model shows a variation in the energy of chemisorptions, 
which is ascribed to a change in surface coverage or a 
continuous and specific range of site reactivity. Its linear 
equation is expressed as (79):

( )t
1 1q = ln ab + lnt
b b

                                        (4) 

The term ( 1
b

) stands for the number of attainable 
adsorption sites whereas ( 1

b )ln(ab) denotes the quantity 
of adsorption lnt = 0. (79). 
The examples of the adsorption kinetics of chlorophenols 
onto different adsorbents are summarized in Table 5.

6. Adsorption Thermodynamics
The adsorption thermodynamics of the CPs are studied 

to verify the adsorption process spontaneity. The most 
popular studied thermodynamic parameters are entropy 
change (∆S), Gibb’s free energy change (∆G), and enthalpy 
change (∆H). The evaluation of the thermodynamic 
parameters is carried out using Van’t Hoff equation which 
is expressed as:

D
S Hln K

R RT
∆ ∆

= −                                            (5) 

where KD, T, and R represent the distribution coefficient, 
the absolute temperature (K), and the universal gas 
constant (8.314 J mol-1 K-1), respectively. A linear graphical 
representation is obtained when ln KD is plotted against 
1/T deriving ∆H and ∆S from the slope and intercept, 
respectively. In this study, ∆G was evaluated from the 
Gibbs-Helmholtz relation (96-98):

DG  RT ln K∆ = −                                            (6)

Physisorption was revealed to describe the adsorption 
of phenolic compounds on a water-compatible 
hypercrosslinked polymeric resin (101), as well as from 
agro-based derived adsorbents (102). On the other hand, 
the adsorption of pure phenolics onto activated carbons 
and polymeric resins (103), modified macroalga (104), 
as well as viable fungal biomass (105) was described as 
exothermic based on the obtained ∆H values. Endothermic 
processes were also reported for the adsorption of pure 
phenols onto waste leached residue, from manganese 

Table 5. Adsorption Kinetics of Chlorophenols Onto Different Adsorbents

Adsorbate Adsorbent Kinetic model Reference

4-Chloroguaiacol Oil palm shell activated carbon Pseudo-second order (78)

4-Chloroguaiacol Prosopis africana seed hull activated carbon Pseudo-second order (68)

4-Chloro-2-methoxyphenol Oil palm shell activated carbon Pseudo-second order (2)

2,4,6-Trichlorophenol Loosestrife activated carbon Pseudo-second order (79)

2,4,6-Trichlorophenol Copper (II)–halloysite Pseudo-second order (82)

2,4,6-Trichlorophenol Chemically modified chitosan Pseudo-second order (87)

2,4,6-Trichlorophenol Cattail fibre-based activated carbon Pseudo-second order (80)

2,4-Dichlorophenol Organo clays Pseudo-second order (84)

2,4-Dichlorophenol Polyimide (PI)-based carbon nanofibers Pseudo-second order (99)

2,4-Dichlorophenol Chemically modified chitosan Pseudo-second order (87)

2,6-Dichlorophenol Modified plantain peel Pseudo-second order (85)

4-Chlorophenol Rattan sawdust based activated carbon Pseudo-second order (86)

4-Chlorophenol Chemically modified chitosan Pseudo-second order (87)
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production (106), and the vegetal cords (107). The same 
process was also reported for mixed standard phenols 
onto activated carbon from the olive husk (108).

7. Conclusion and Future Outlook
In this review, the adsorption process was reported for 

its attributes in effectiveness, simplicity in design and 
applicability, fast kinetics, and its universal nature for 
the removal of CPs from wastewater among the other 
wastewater treatment methods. A number of adsorbents 
such as agricultural wastes, active carbons, industrial by-
products, biosorbents, and nanomaterials were used at 
various conditions for the decontamination of wastewater 
containing CPs. However, in the adsorption system 
designing, researchers have developed and revealed linear 
regression as the most preferable option in the last few 
decades despite indications from recent investigations 
signaling an increasing discrepancy and shortcoming of 
the model, which propagates toward a different outcome. 
Despite the above-mentioned explanations, linearization 
remains the most trusted option in the literature and 
statistics prove its application in over 95% of the liquid-
phase adsorption systems. Hence, the next real challenge 
in the adsorption field is the identification and clarification 
of both isotherm models in various adsorption systems. 
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