Synthesis and Characterization of Ultrafine Ag/ZnO Nanotetrapods (AZNTP) for Environment Humidity Sensing

Babak Sadeghi*

Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

Abstract

Ag/ZnO nanotetrapods (AZNTP) are prepared using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) under a phase separation system. This crystal structure and lattice constant of the AZNTP was investigated by means of XRD, TEM, and UV-vis spectrum. AZNTP films with 23 nm in arm diameter and high surface activity work at room temperature as humidity sensors. AZNTP have shown some properties including quick response with high sensitivity, a longer life span and recovery, and no need for heat regeneration. Moreover, AZNTP could form OH group with physisorbed water in wet environments. The results of the present study demonstrated that the growth and characterization of AZNTP for environmental humidity sensing and DAP play an original role in the determination of particle morphology. Ultra-thin AZNTP has also been tested as a resistance sensor, having an unusual high sensitivity to moisture.

Keywords: 1, 3-Diaminopropane (DAP), Ag/ZnO nanotetrapods (AZNTP), Bimetallic, Humidity sensors, Controlled growth, Transmission electron microscopy (TEM)

1. Introduction

Most humidity sensors are currently based on aluminum polymers and ceramic porous components in which a sensitive ionic humidification mechanism has been employed (1, 2). In the case of ceramics, due to water absorption (chemical and physical) and/or capillary density inside the cavities, it is necessary to react to oxides using the moisture by decreasing their impedance. This mechanism is done in low temperatures during which water should be on the surface of the phosphorus oxide (3-6). Various types of materials are used as humidity sensors, as well as sensors in commercial devices. In the meantime, ceramics have been used for their thermal and chemical stability and mechanical strength (7-11). However, each of these materials has its own limited uses. Different measurement mechanisms and operating principles have been identified for ceramic oxides using the variations in electrical parameters (12, 13). First, the detection of moisture depends on the processes of water absorption. The importance of these surface reactions for all these ceramic moisture sensors has been emphasized, as all of them are dependent on the level-related effects. High porosity and suitable surface area are favorable for increased sensitivity. The importance of particle size distribution in the electrical response to moisture from ceramic porous compounds is also mentioned (14-18). Other humidity sensors have recently been developed using various diagnostic mechanisms, from which high temperature moisture sensors from electrolytes use the electrolysis of high-voltage water vapor (>1.4 V). The electrolysis of adsorbed water is assumed to occur in contact sites with p-n. Therefore, p-n connections can be considered as another class of ceramic moisture sensors (19).

We have developed a reduction method of synthesis of Ag nanospheres and antibacterial activity (20), synthesized Ag/ZnO nanocomposites (21), and compared nanosilver particles and nanosilver plates for the oxidation of ascorbic acid (22, 23). Not only ZnO is a hydrophilic material that has been used for humidity detection (24), but also it has been ultra-thin Ag/ZnO nanotetrapods (AZNTP), which will lead to the conductivity of ZnO, dramatically and increasingly. Indeed, the humidity sensors based on AZNTP have shown high sensitivity and recovery at room temperature. Due to Ultra-thin AZNTP, and double ionic layers in the inner wall of nanotetrapods will lead to the conductivity of AZNTP dramatically and increasingly (25).
2. Materials and Methods

2.1. Materials

Zinc sulfide (silver) (I) -bis (oxalato) was synthesized. K₂ZnCl₄, 4H₂O (Merck, Germany) was dissolved in 20 mL of water, and 4 mM K₂C₂O₄.H₂O (Sigma-Ald., Germany) was added at 55 °C. In a little while, the solution turned orange and K₂[Zn(C₂O₄)₂]·4H₂O was deposited. Then, 1.5 mM of K₂[Zn(C₂O₄)₂], 1.5 mM of AgNO₃ and 1.5 mm of 1, 3 diaminopropane (DAP) was added to 20 mL of aqueous solution and shaken at 55°C and cooled in an ice water bath. In this process, Ag₂[Zn(C₂O₄)₂].3H₂O with yellow crystals were precipitated. After washing with cold water, yellow powder was stored in the dark. The nano alloys were formed slowly at the liquid/liquid interface and oxalate complex was found to prevent unfavorable silver halide formation and thus it was suitable for the formation of Ag/ZnO nanotetrapods (26, 27).

2.2. Characterization

The morphology and crystal structure of the co-deposited AZNTP were investigated by the Powder X-ray diffraction (XRD) pattern using the XD-3a quantum beam, and a nickel filter (λ = 1, 5418°C) was visible in an Argon 3003 PTC UV-Vis spectrum in the adsorption mode on the Hitachi U-2101 PC UV spectrophotometer. The sample solution was prepared by suspending a small amount of powder in the ethanol solution. At 100 kV, TEM was performed using a Philips EM208 microscope. After dispersing the powder in ethanol, samples were prepared. A few drops of suspension were coated in a 400 µk grille with imaging carbon.

3. Results and Discussion

3.1. UV–Vis Spectral Studies

Absorption spectra were recorded for AZNTP with 17 nm in arm diameter after adding ZnCl₂ to AZNTP pre-prepared (as shown in Fig. 1). Surface plasmon resonance at about 410 nm was prepared and highlighted in AZNTP which showed that silver nanoparticles were formed separately. After Zn formation, amount of individual Ag nanoparticles is reduced, and then Zn covers the Ag nanoparticles (28, 29). After reducing ZnCl₂ (Ag formation), an increase in long-wave absorption was observed, showing the formation of larger objects like Tetrapod (30).

3.2. XRD and EDX

Figs. 2a and 2b show broad bands of the diffractograms of the bimetallic, while exhibiting sharp bands. The particle size is calculated based on the Scherrer equation:

\[t = \frac{0.9\lambda}{\beta \cos \theta} \]

where, \(t \) is the particle size in Å, \(\lambda \) is the X-ray wavelength, \(\theta \) is the Bragg angle, and \(\beta \) corresponds to the full width at half maximum (FWHM, in radians) of the peak under consideration. As abovementioned, Ag/ZnO nanotetrapods (AZNTP) has values of \(d \) and \(2\theta \), that are very close to each other (JCPDS 36- 1451, 4-0784).

Fig. 2. XRD of Standard Ag/ZnO (a), and Ag/ZnO Nanotetrapods (AZNTP) Prepared (b). (JCPDS 36-1451).
to 110, 103, and 112 ZnO planes (29,30). This particle size (calculated using equation 1) was 25 ± 1 nm based on the peak (101). These values were near to the calculated values of the TEM measurements. An energy dispersive X-ray (EDX) spectrum of the AZNTP is shown in Fig. 3. Some features of Ag, Zn, and O atoms can only be observed in this spectrum. The appearance of Si peak in the spectrum was due to the substrate.

The detection of only Ag, Zn, and O atoms confirmed the preparation of AZNTP with high purity, although we could not deny the possible presence of some SiO$_2$ impurities which were not detectable in the XRD plot.

3. 3. TEM

The AZNTP dispersion had an arm diameter of 17–20 nm (Fig. 4); however, Ag nanoparticles were hardly discerned after ZnO-networked Ag colloids were formed. In the system where an aqueous 1 × 10$^{-3}$ mol L$^{-1}$ AgNO$_3$ solution was added to a ZnO nanoparticle dispersion 10 wt% formamide solution at ∼100°C, core-shell of ZnO–Ag nanoparticles was formed which coexisted with AZNTP (Fig. 4).

For the AZNTP system, adding a small amount of Ag to ZnO (even a few percent) can affect the crystalline structure. As a result of the crystalline structure of Ag (31), it was suggested that coated nanoparticles are a solution composed of AZNTP, which is made up of a crystalline structure close to the silver, and released under heat treatment under internal stress, leading to solid solvent formation in the thermodynamic equilibrium. The change in the network parameter with thermal treatment was considered as the result of this building relaxation. The stable AZNTP observed in this study appears to be related to high energy levels for nanoscopic materials (32). Various features of this AZNTP such as magnetic transport and electron transport will be investigated.

3.4. Ag/Zno Nanotetrapods as Humidity Sensors

The humidity sensitivity is defined as:

$$S = \frac{I_{H2O} - I_{N2}}{I_{N2}}$$

where I_{H2O} is the current under a given relative humidity.

![Fig. 3. EDX Spectrum Measured for Ag/ZnO Nanotetrapods (AZNTP) Prepared by the Zn and Ag Salts at 100 °C.](image)

![Fig. 4a-b. TEM Images of Ag/ZnO nanotetrapods (AZNTP) Prepared.](image)

![Fig. 5. Sensitivity Variation of the Ag/ZnO Nanotetrapods (23 nm in Arm Diameter).](image)
and I_{on} is the current in pure nitrogen.

This sensor is made of AZNTP (22 nm in diameter). The sensitivity of AZNTP fewer than 100% relative humidity at 34°C is about 335 and reproducibility is seen. The recovery and response are defined as reaching 96% and 4% maximum sensitivity which takes about 38 and 16 seconds, respectively. Fig. 5 shows the lifetime of AZNTP humidity sensor. We comparatively studied the humidity sensor performance between AZNTP of different sizes to demonstrate the virtue of AZNTP in relative humidity sensing (Fig. 6). In addition, due to larger surface area and available oxygen vacancies, small tetrapods (23 nm in arm diameter) were provided to be much more sensitive to humidity than larger tetrapods (80 nm in arm diameter) (33). According to the ionic-conduction mechanism, porosity and surface activity are two main factors in showing the humidity sensitivity of AZNTP.

This means that the capacitive component of the sensor impedance becomes more dominating at higher humidity (i.e. the transition frequency increases when the humidity level rises).

Thus, even when humidity increases, the resistive component of the sensor impedance remains dominant whilst the capacitive component of the sensor impedance becomes even less dominant. This result is a decrease of the transition frequency with increasing the humidity. For instance, the printed sensor head had a transition frequency around 75 kHz below 62% RH, but it reduced down to about 50 kHz above 77% RH. As a result, a printed sensor head, working between 155 kHz and 255 kHz, could always be considered as being primarily a resistive-type sensor.

4. Conclusion

In conclusion, the morphology, humidity sensor properties of the AZNTP were characterized. AZNTP has sensitivity to humidity and sensitivity increases with decreasing the size of tetrapod. The high sensitivity, quick response and recovery, high surface activity, and long lifetime of the tetrapods’ humidity sensor with a stable OH group layer was formed and then covered with physisorbed water to wet environments. When tested as a resistance sensor, ultra-thin AZNTP also displays an unusual high sensitivity to moisture. This sensitivity increased significantly due to the specific level, but the more important reason was that it had two overlapping layers in the nanoscale channels, which caused a significant increase in the proton conduction. Humidity sensitivity has a certain level of good relationship with AZNTP with a diameter of 22 nm.

Acknowledgments

The financial support and encouragement was provided by the Research Vice- Presidency of Tonekabon Branch, Islamic Azad University.

References

