Mahdi Asadi-Ghalhari
1 , Fatemeh Ranjdoost
2* , Fatemeh Sadat Tabatabaei
3 , Roqiyeh Mostafaloo
4 , Hassan Izanloo
5 , Nasim Ghafouri
6 , Alireza Omidi Oskouei
7, Somaye Behnamipour
5 , Reza Ansari
8 1 Department of Environmental Health Engineering, Faculty of Health, Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
2 Student Research Committee, Qom University of Medical Sciences, Qom, Iran
3 Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
4 Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
5 Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
6 Department of Environmental Health Engineering, Alborz University of Medical Sciences, Alborz, Iran
7 Department of Public Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
8 Monitoring Center for Water and Sewage Quality, Department of Water and Wastewater, Qom, Iran
Abstract
In recent years, the presence of various pharmaceutical residues such as cefixime (CFX) in aquatic environments has been gaining attention due to its adverse effects on health and ecosystems. Since conventional treatment methods are unable to remove antibiotics, sustainable and efficient approaches are needed to remove these compounds from aquatic environments. In this study, granular ferric oxide (GFO) was used to remove CFX, and the experiments were designed using Design Expert software. The findings were then analyzed using ANOVA test. The results showed that the proposed regression model fit the experimental condition (R2=0.9701, R2 adjusted=0.9432, R2 predicted=0.83). Several residual plots were used to confirm the suitability of the model. The initial concentration of 1.84 mg/L, GFO dose of 3.05 mg/L, and contact time of 24.32 minutes were found to be the ideal conditions for CFX adsorption. Moreover, the findings showed that GFO can be effective in absorbing and removing CFX from aqueous environments.